| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu8 | Unicode version | ||
| Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.) |
| Ref | Expression |
|---|---|
| rmo4.1 |
|
| Ref | Expression |
|---|---|
| reu8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo4.1 |
. . 3
| |
| 2 | 1 | cbvreuv 2579 |
. 2
|
| 3 | reu6 2781 |
. 2
| |
| 4 | dfbi2 380 |
. . . . 5
| |
| 5 | 4 | ralbii 2372 |
. . . 4
|
| 6 | ancom 262 |
. . . . . 6
| |
| 7 | equcom 1633 |
. . . . . . . . . 10
| |
| 8 | 7 | imbi2i 224 |
. . . . . . . . 9
|
| 9 | 8 | ralbii 2372 |
. . . . . . . 8
|
| 10 | 9 | a1i 9 |
. . . . . . 7
|
| 11 | biimt 239 |
. . . . . . . 8
| |
| 12 | df-ral 2353 |
. . . . . . . . 9
| |
| 13 | bi2.04 246 |
. . . . . . . . . 10
| |
| 14 | 13 | albii 1399 |
. . . . . . . . 9
|
| 15 | vex 2604 |
. . . . . . . . . 10
| |
| 16 | eleq1 2141 |
. . . . . . . . . . . . 13
| |
| 17 | 16, 1 | imbi12d 232 |
. . . . . . . . . . . 12
|
| 18 | 17 | bicomd 139 |
. . . . . . . . . . 11
|
| 19 | 18 | equcoms 1634 |
. . . . . . . . . 10
|
| 20 | 15, 19 | ceqsalv 2629 |
. . . . . . . . 9
|
| 21 | 12, 14, 20 | 3bitrri 205 |
. . . . . . . 8
|
| 22 | 11, 21 | syl6bb 194 |
. . . . . . 7
|
| 23 | 10, 22 | anbi12d 456 |
. . . . . 6
|
| 24 | 6, 23 | syl5bb 190 |
. . . . 5
|
| 25 | r19.26 2485 |
. . . . 5
| |
| 26 | 24, 25 | syl6rbbr 197 |
. . . 4
|
| 27 | 5, 26 | syl5bb 190 |
. . 3
|
| 28 | 27 | rexbiia 2381 |
. 2
|
| 29 | 2, 3, 28 | 3bitri 204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-rex 2354 df-reu 2355 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |