Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-ssom Unicode version

Theorem bj-ssom 10731
Description: A characterization of subclasses of  om. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-ssom  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Distinct variable group:    x, A

Proof of Theorem bj-ssom
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3652 . . 3  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A. x  e.  { y  | Ind  y } A  C_  x )
2 df-ral 2353 . . 3  |-  ( A. x  e.  { y  | Ind  y } A  C_  x 
<-> 
A. x ( x  e.  { y  | Ind  y }  ->  A  C_  x ) )
3 vex 2604 . . . . . 6  |-  x  e. 
_V
4 bj-indeq 10724 . . . . . 6  |-  ( y  =  x  ->  (Ind  y 
<-> Ind  x ) )
53, 4elab 2738 . . . . 5  |-  ( x  e.  { y  | Ind  y }  <-> Ind  x )
65imbi1i 236 . . . 4  |-  ( ( x  e.  { y  | Ind  y }  ->  A 
C_  x )  <->  (Ind  x  ->  A  C_  x )
)
76albii 1399 . . 3  |-  ( A. x ( x  e. 
{ y  | Ind  y }  ->  A  C_  x
)  <->  A. x (Ind  x  ->  A  C_  x )
)
81, 2, 73bitrri 205 . 2  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  |^| { y  | Ind  y } )
9 bj-dfom 10728 . . . 4  |-  om  =  |^| { y  | Ind  y }
109eqcomi 2085 . . 3  |-  |^| { y  | Ind  y }  =  om
1110sseq2i 3024 . 2  |-  ( A 
C_  |^| { y  | Ind  y }  <->  A  C_  om )
128, 11bitri 182 1  |-  ( A. x (Ind  x  ->  A 
C_  x )  <->  A  C_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    e. wcel 1433   {cab 2067   A.wral 2348    C_ wss 2973   |^|cint 3636   omcom 4331  Ind wind 10721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-in 2979  df-ss 2986  df-int 3637  df-iom 4332  df-bj-ind 10722
This theorem is referenced by:  bj-om  10732
  Copyright terms: Public domain W3C validator