| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfco2 | Unicode version | ||
| Description: Alternate definition of a class composition, using only one bound variable. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 4839 |
. 2
| |
| 2 | reliun 4476 |
. . 3
| |
| 3 | relxp 4465 |
. . . 4
| |
| 4 | 3 | a1i 9 |
. . 3
|
| 5 | 2, 4 | mprgbir 2421 |
. 2
|
| 6 | vex 2604 |
. . . 4
| |
| 7 | vex 2604 |
. . . 4
| |
| 8 | opelco2g 4521 |
. . . 4
| |
| 9 | 6, 7, 8 | mp2an 416 |
. . 3
|
| 10 | eliun 3682 |
. . . 4
| |
| 11 | rexv 2617 |
. . . 4
| |
| 12 | opelxp 4392 |
. . . . . 6
| |
| 13 | vex 2604 |
. . . . . . . . 9
| |
| 14 | 13, 6 | elimasn 4712 |
. . . . . . . 8
|
| 15 | 13, 6 | opelcnv 4535 |
. . . . . . . 8
|
| 16 | 14, 15 | bitri 182 |
. . . . . . 7
|
| 17 | 13, 7 | elimasn 4712 |
. . . . . . 7
|
| 18 | 16, 17 | anbi12i 447 |
. . . . . 6
|
| 19 | 12, 18 | bitri 182 |
. . . . 5
|
| 20 | 19 | exbii 1536 |
. . . 4
|
| 21 | 10, 11, 20 | 3bitrri 205 |
. . 3
|
| 22 | 9, 21 | bitri 182 |
. 2
|
| 23 | 1, 5, 22 | eqrelriiv 4452 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-iun 3680 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
| This theorem is referenced by: dfco2a 4841 |
| Copyright terms: Public domain | W3C validator |