| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lincmb01cmp | Unicode version | ||
| Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.) |
| Ref | Expression |
|---|---|
| lincmb01cmp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 108 |
. . . . 5
| |
| 2 | 0re 7119 |
. . . . . . 7
| |
| 3 | 2 | a1i 9 |
. . . . . 6
|
| 4 | 1re 7118 |
. . . . . . 7
| |
| 5 | 4 | a1i 9 |
. . . . . 6
|
| 6 | 2, 4 | elicc2i 8962 |
. . . . . . . 8
|
| 7 | 6 | simp1bi 953 |
. . . . . . 7
|
| 8 | 7 | adantl 271 |
. . . . . 6
|
| 9 | difrp 8770 |
. . . . . . . 8
| |
| 10 | 9 | biimp3a 1276 |
. . . . . . 7
|
| 11 | 10 | adantr 270 |
. . . . . 6
|
| 12 | eqid 2081 |
. . . . . . 7
| |
| 13 | eqid 2081 |
. . . . . . 7
| |
| 14 | 12, 13 | iccdil 9020 |
. . . . . 6
|
| 15 | 3, 5, 8, 11, 14 | syl22anc 1170 |
. . . . 5
|
| 16 | 1, 15 | mpbid 145 |
. . . 4
|
| 17 | simpl2 942 |
. . . . . . . 8
| |
| 18 | simpl1 941 |
. . . . . . . 8
| |
| 19 | 17, 18 | resubcld 7485 |
. . . . . . 7
|
| 20 | 19 | recnd 7147 |
. . . . . 6
|
| 21 | 20 | mul02d 7496 |
. . . . 5
|
| 22 | 20 | mulid2d 7137 |
. . . . 5
|
| 23 | 21, 22 | oveq12d 5550 |
. . . 4
|
| 24 | 16, 23 | eleqtrd 2157 |
. . 3
|
| 25 | 8, 19 | remulcld 7149 |
. . . 4
|
| 26 | eqid 2081 |
. . . . 5
| |
| 27 | eqid 2081 |
. . . . 5
| |
| 28 | 26, 27 | iccshftr 9016 |
. . . 4
|
| 29 | 3, 19, 25, 18, 28 | syl22anc 1170 |
. . 3
|
| 30 | 24, 29 | mpbid 145 |
. 2
|
| 31 | 8 | recnd 7147 |
. . . . 5
|
| 32 | 17 | recnd 7147 |
. . . . 5
|
| 33 | 31, 32 | mulcld 7139 |
. . . 4
|
| 34 | 18 | recnd 7147 |
. . . . 5
|
| 35 | 31, 34 | mulcld 7139 |
. . . 4
|
| 36 | 33, 35, 34 | subadd23d 7441 |
. . 3
|
| 37 | 31, 32, 34 | subdid 7518 |
. . . 4
|
| 38 | 37 | oveq1d 5547 |
. . 3
|
| 39 | resubcl 7372 |
. . . . . . . 8
| |
| 40 | 4, 8, 39 | sylancr 405 |
. . . . . . 7
|
| 41 | 40, 18 | remulcld 7149 |
. . . . . 6
|
| 42 | 41 | recnd 7147 |
. . . . 5
|
| 43 | 42, 33 | addcomd 7259 |
. . . 4
|
| 44 | 1cnd 7135 |
. . . . . . 7
| |
| 45 | 44, 31, 34 | subdird 7519 |
. . . . . 6
|
| 46 | 34 | mulid2d 7137 |
. . . . . . 7
|
| 47 | 46 | oveq1d 5547 |
. . . . . 6
|
| 48 | 45, 47 | eqtrd 2113 |
. . . . 5
|
| 49 | 48 | oveq2d 5548 |
. . . 4
|
| 50 | 43, 49 | eqtrd 2113 |
. . 3
|
| 51 | 36, 38, 50 | 3eqtr4d 2123 |
. 2
|
| 52 | 34 | addid2d 7258 |
. . 3
|
| 53 | 32, 34 | npcand 7423 |
. . 3
|
| 54 | 52, 53 | oveq12d 5550 |
. 2
|
| 55 | 30, 51, 54 | 3eltr3d 2161 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 |
| This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-po 4051 df-iso 4052 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-iota 4887 df-fun 4924 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-rp 8735 df-icc 8918 |
| This theorem is referenced by: iccf1o 9026 |
| Copyright terms: Public domain | W3C validator |