ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moddvds Unicode version

Theorem moddvds 10204
Description: Two ways to say  A  ==  B (mod  N), see also definition in [ApostolNT] p. 106. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
moddvds  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )

Proof of Theorem moddvds
StepHypRef Expression
1 nnq 8718 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  QQ )
21adantr 270 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  N  e.  QQ )
3 nngt0 8064 . . . . . 6  |-  ( N  e.  NN  ->  0  <  N )
43adantr 270 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  0  <  N )
5 q0mod 9357 . . . . 5  |-  ( ( N  e.  QQ  /\  0  <  N )  -> 
( 0  mod  N
)  =  0 )
62, 4, 5syl2anc 403 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  mod  N )  =  0 )
76eqeq2d 2092 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  <->  ( ( A  -  B )  mod  N )  =  0 ) )
8 zq 8711 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  A  e.  QQ )
98ad2antrl 473 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  QQ )
109adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  A  e.  QQ )
11 zq 8711 . . . . . . . . 9  |-  ( B  e.  ZZ  ->  B  e.  QQ )
1211ad2antll 474 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  QQ )
1312adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  B  e.  QQ )
14 qnegcl 8721 . . . . . . . 8  |-  ( B  e.  QQ  ->  -u B  e.  QQ )
1513, 14syl 14 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  -u B  e.  QQ )
162adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  N  e.  QQ )
174adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  0  <  N )
18 simpr 108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  ( A  mod  N )  =  ( B  mod  N
) )
1910, 13, 15, 16, 17, 18modqadd1 9363 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( A  mod  N )  =  ( B  mod  N
) )  ->  (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )
)
2019ex 113 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  +  -u B )  mod  N )  =  ( ( B  +  -u B )  mod  N
) ) )
21 simprl 497 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  ZZ )
2221zcnd 8470 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  A  e.  CC )
23 simprr 498 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  ZZ )
2423zcnd 8470 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  B  e.  CC )
2522, 24negsubd 7425 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( A  +  -u B )  =  ( A  -  B
) )
2625oveq1d 5547 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  +  -u B )  mod  N )  =  ( ( A  -  B )  mod  N
) )
2724negidd 7409 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( B  +  -u B )  =  0 )
2827oveq1d 5547 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( B  +  -u B )  mod  N )  =  ( 0  mod  N
) )
2926, 28eqeq12d 2095 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  +  -u B )  mod  N
)  =  ( ( B  +  -u B
)  mod  N )  <->  ( ( A  -  B
)  mod  N )  =  ( 0  mod 
N ) ) )
3020, 29sylibd 147 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  ->  ( ( A  -  B )  mod  N )  =  ( 0  mod  N ) ) )
319adantr 270 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  A  e.  QQ )
3212adantr 270 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  B  e.  QQ )
33 qsubcl 8723 . . . . . . . 8  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B
)  e.  QQ )
3431, 32, 33syl2anc 403 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  ( A  -  B )  e.  QQ )
35 0z 8362 . . . . . . . 8  |-  0  e.  ZZ
36 zq 8711 . . . . . . . 8  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
3735, 36mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  e.  QQ )
382adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  N  e.  QQ )
394adantr 270 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  0  <  N )
40 simpr 108 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( A  -  B
)  mod  N )  =  ( 0  mod 
N ) )
4134, 37, 32, 38, 39, 40modqadd1 9363 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  /\  ( ( A  -  B )  mod  N )  =  ( 0  mod  N
) )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) )
4241ex 113 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N ) ) )
4322, 24npcand 7423 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  -  B )  +  B )  =  A )
4443oveq1d 5547 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  +  B )  mod  N )  =  ( A  mod  N
) )
4524addid2d 7258 . . . . . . 7  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( 0  +  B )  =  B )
4645oveq1d 5547 . . . . . 6  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
0  +  B )  mod  N )  =  ( B  mod  N
) )
4744, 46eqeq12d 2095 . . . . 5  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( ( A  -  B )  +  B
)  mod  N )  =  ( ( 0  +  B )  mod 
N )  <->  ( A  mod  N )  =  ( B  mod  N ) ) )
4842, 47sylibd 147 . . . 4  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( (
( A  -  B
)  mod  N )  =  ( 0  mod 
N )  ->  ( A  mod  N )  =  ( B  mod  N
) ) )
4930, 48impbid 127 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  ( ( A  -  B )  mod 
N )  =  ( 0  mod  N ) ) )
50 zsubcl 8392 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  -  B
)  e.  ZZ )
51 dvdsval3 10199 . . . 4  |-  ( ( N  e.  NN  /\  ( A  -  B
)  e.  ZZ )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
5250, 51sylan2 280 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( N  ||  ( A  -  B
)  <->  ( ( A  -  B )  mod 
N )  =  0 ) )
537, 49, 523bitr4d 218 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  B  e.  ZZ ) )  ->  ( ( A  mod  N )  =  ( B  mod  N
)  <->  N  ||  ( A  -  B ) ) )
54533impb 1134 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( A  mod  N
)  =  ( B  mod  N )  <->  N  ||  ( A  -  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785  (class class class)co 5532   0cc0 6981    + caddc 6984    < clt 7153    - cmin 7279   -ucneg 7280   NNcn 8039   ZZcz 8351   QQcq 8704    mod cmo 9324    || cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325  df-dvds 10196
This theorem is referenced by:  summodnegmod  10226  modmulconst  10227  addmodlteqALT  10259  dvdsmod  10262  congr  10482  cncongr1  10485  cncongr2  10486
  Copyright terms: Public domain W3C validator