| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0addcl | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| un0addcl.1 |
|
| un0addcl.2 |
|
| un0addcl.3 |
|
| Ref | Expression |
|---|---|
| un0addcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | un0addcl.2 |
. . . . 5
| |
| 2 | 1 | eleq2i 2145 |
. . . 4
|
| 3 | elun 3113 |
. . . 4
| |
| 4 | 2, 3 | bitri 182 |
. . 3
|
| 5 | 1 | eleq2i 2145 |
. . . . . 6
|
| 6 | elun 3113 |
. . . . . 6
| |
| 7 | 5, 6 | bitri 182 |
. . . . 5
|
| 8 | ssun1 3135 |
. . . . . . . . 9
| |
| 9 | 8, 1 | sseqtr4i 3032 |
. . . . . . . 8
|
| 10 | un0addcl.3 |
. . . . . . . 8
| |
| 11 | 9, 10 | sseldi 2997 |
. . . . . . 7
|
| 12 | 11 | expr 367 |
. . . . . 6
|
| 13 | un0addcl.1 |
. . . . . . . . . . 11
| |
| 14 | 13 | sselda 2999 |
. . . . . . . . . 10
|
| 15 | 14 | addid2d 7258 |
. . . . . . . . 9
|
| 16 | 9 | a1i 9 |
. . . . . . . . . 10
|
| 17 | 16 | sselda 2999 |
. . . . . . . . 9
|
| 18 | 15, 17 | eqeltrd 2155 |
. . . . . . . 8
|
| 19 | elsni 3416 |
. . . . . . . . . 10
| |
| 20 | 19 | oveq1d 5547 |
. . . . . . . . 9
|
| 21 | 20 | eleq1d 2147 |
. . . . . . . 8
|
| 22 | 18, 21 | syl5ibrcom 155 |
. . . . . . 7
|
| 23 | 22 | impancom 256 |
. . . . . 6
|
| 24 | 12, 23 | jaodan 743 |
. . . . 5
|
| 25 | 7, 24 | sylan2b 281 |
. . . 4
|
| 26 | 0cnd 7112 |
. . . . . . . . . . 11
| |
| 27 | 26 | snssd 3530 |
. . . . . . . . . 10
|
| 28 | 13, 27 | unssd 3148 |
. . . . . . . . 9
|
| 29 | 1, 28 | syl5eqss 3043 |
. . . . . . . 8
|
| 30 | 29 | sselda 2999 |
. . . . . . 7
|
| 31 | 30 | addid1d 7257 |
. . . . . 6
|
| 32 | simpr 108 |
. . . . . 6
| |
| 33 | 31, 32 | eqeltrd 2155 |
. . . . 5
|
| 34 | elsni 3416 |
. . . . . . 7
| |
| 35 | 34 | oveq2d 5548 |
. . . . . 6
|
| 36 | 35 | eleq1d 2147 |
. . . . 5
|
| 37 | 33, 36 | syl5ibrcom 155 |
. . . 4
|
| 38 | 25, 37 | jaod 669 |
. . 3
|
| 39 | 4, 38 | syl5bi 150 |
. 2
|
| 40 | 39 | impr 371 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-1cn 7069 ax-icn 7071 ax-addcl 7072 ax-mulcl 7074 ax-addcom 7076 ax-i2m1 7081 ax-0id 7084 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 |
| This theorem is referenced by: nn0addcl 8323 |
| Copyright terms: Public domain | W3C validator |