| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdsepnft | Unicode version | ||
| Description: Closed form of bdsepnf 10679. Version of ax-bdsep 10675 with one DV condition removed, the other DV condition replaced by a non-freeness antecedent, and without initial universal quantifier. Use bdsep1 10676 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdsepnft.1 |
|
| Ref | Expression |
|---|---|
| bdsepnft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdsepnft.1 |
. . 3
| |
| 2 | 1 | bdsep2 10677 |
. 2
|
| 3 | nfnf1 1476 |
. . . 4
| |
| 4 | 3 | nfal 1508 |
. . 3
|
| 5 | nfa1 1474 |
. . . 4
| |
| 6 | nfvd 1462 |
. . . . 5
| |
| 7 | nfv 1461 |
. . . . . . 7
| |
| 8 | 7 | a1i 9 |
. . . . . 6
|
| 9 | sp 1441 |
. . . . . 6
| |
| 10 | 8, 9 | nfand 1500 |
. . . . 5
|
| 11 | 6, 10 | nfbid 1520 |
. . . 4
|
| 12 | 5, 11 | nfald 1683 |
. . 3
|
| 13 | nfv 1461 |
. . . . . 6
| |
| 14 | 5, 13 | nfan 1497 |
. . . . 5
|
| 15 | elequ2 1641 |
. . . . . . 7
| |
| 16 | 15 | adantl 271 |
. . . . . 6
|
| 17 | 16 | bibi1d 231 |
. . . . 5
|
| 18 | 14, 17 | albid 1546 |
. . . 4
|
| 19 | 18 | ex 113 |
. . 3
|
| 20 | 4, 12, 19 | cbvexd 1843 |
. 2
|
| 21 | 2, 20 | mpbii 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 |
| This theorem is referenced by: bdsepnf 10679 |
| Copyright terms: Public domain | W3C validator |