| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdss | Unicode version | ||
| Description: The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdss.1 |
|
| Ref | Expression |
|---|---|
| bdss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdss.1 |
. . . 4
| |
| 2 | 1 | bdeli 10637 |
. . 3
|
| 3 | 2 | ax-bdal 10609 |
. 2
|
| 4 | dfss3 2989 |
. 2
| |
| 5 | 3, 4 | bd0r 10616 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdal 10609 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-in 2979 df-ss 2986 df-bdc 10632 |
| This theorem is referenced by: bdeq0 10658 bdcpw 10660 bdvsn 10665 bdop 10666 bdeqsuc 10672 bj-nntrans 10746 bj-omtrans 10751 |
| Copyright terms: Public domain | W3C validator |