Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans Unicode version

Theorem bj-omtrans 10751
Description: The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4346.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-omtrans  |-  ( A  e.  om  ->  A  C_ 
om )

Proof of Theorem bj-omtrans
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 10737 . . 3  |-  om  e.  _V
2 sseq2 3021 . . . . . 6  |-  ( a  =  om  ->  (
y  C_  a  <->  y  C_  om ) )
3 sseq2 3021 . . . . . 6  |-  ( a  =  om  ->  ( suc  y  C_  a  <->  suc  y  C_  om ) )
42, 3imbi12d 232 . . . . 5  |-  ( a  =  om  ->  (
( y  C_  a  ->  suc  y  C_  a
)  <->  ( y  C_  om 
->  suc  y  C_  om )
) )
54ralbidv 2368 . . . 4  |-  ( a  =  om  ->  ( A. y  e.  om  ( y  C_  a  ->  suc  y  C_  a
)  <->  A. y  e.  om  ( y  C_  om  ->  suc  y  C_  om )
) )
6 sseq2 3021 . . . . 5  |-  ( a  =  om  ->  ( A  C_  a  <->  A  C_  om )
)
76imbi2d 228 . . . 4  |-  ( a  =  om  ->  (
( A  e.  om  ->  A  C_  a )  <->  ( A  e.  om  ->  A 
C_  om ) ) )
85, 7imbi12d 232 . . 3  |-  ( a  =  om  ->  (
( A. y  e. 
om  ( y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A 
C_  a ) )  <-> 
( A. y  e. 
om  ( y  C_  om 
->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
) ) )
9 0ss 3282 . . . 4  |-  (/)  C_  a
10 bdcv 10639 . . . . . 6  |- BOUNDED  a
1110bdss 10655 . . . . 5  |- BOUNDED  x  C_  a
12 nfv 1461 . . . . 5  |-  F/ x (/)  C_  a
13 nfv 1461 . . . . 5  |-  F/ x  y  C_  a
14 nfv 1461 . . . . 5  |-  F/ x  suc  y  C_  a
15 sseq1 3020 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  a  <->  (/)  C_  a
) )
1615biimprd 156 . . . . 5  |-  ( x  =  (/)  ->  ( (/)  C_  a  ->  x  C_  a
) )
17 sseq1 3020 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  a  <->  y  C_  a ) )
1817biimpd 142 . . . . 5  |-  ( x  =  y  ->  (
x  C_  a  ->  y 
C_  a ) )
19 sseq1 3020 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  C_  a  <->  suc  y  C_  a )
)
2019biimprd 156 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  y  C_  a  ->  x  C_  a
) )
21 nfcv 2219 . . . . 5  |-  F/_ x A
22 nfv 1461 . . . . 5  |-  F/ x  A  C_  a
23 sseq1 3020 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  a  <->  A  C_  a
) )
2423biimpd 142 . . . . 5  |-  ( x  =  A  ->  (
x  C_  a  ->  A 
C_  a ) )
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 10743 . . . 4  |-  ( (
(/)  C_  a  /\  A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )
)  ->  ( A  e.  om  ->  A  C_  a
) )
269, 25mpan 414 . . 3  |-  ( A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A  C_  a )
)
271, 8, 26vtocl 2653 . 2  |-  ( A. y  e.  om  (
y  C_  om  ->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
)
28 df-suc 4126 . . . 4  |-  suc  y  =  ( y  u. 
{ y } )
29 simpr 108 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  C_  om )
30 simpl 107 . . . . . 6  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  e.  om )
3130snssd 3530 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  ->  { y }  C_  om )
3229, 31unssd 3148 . . . 4  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
( y  u.  {
y } )  C_  om )
3328, 32syl5eqss 3043 . . 3  |-  ( ( y  e.  om  /\  y  C_  om )  ->  suc  y  C_  om )
3433ex 113 . 2  |-  ( y  e.  om  ->  (
y  C_  om  ->  suc  y  C_  om )
)
3527, 34mprg 2420 1  |-  ( A  e.  om  ->  A  C_ 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   A.wral 2348    u. cun 2971    C_ wss 2973   (/)c0 3251   {csn 3398   suc csuc 4120   omcom 4331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdal 10609  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675  ax-infvn 10736
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-int 3637  df-suc 4126  df-iom 4332  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-omtrans2  10752  bj-nnord  10753  bj-nn0suc  10759
  Copyright terms: Public domain W3C validator