| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdop | Unicode version | ||
| Description: The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bdop |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdvsn 10665 |
. . . 4
| |
| 2 | bdcpr 10662 |
. . . . . . 7
| |
| 3 | 2 | bdss 10655 |
. . . . . 6
|
| 4 | ax-bdel 10612 |
. . . . . . . 8
| |
| 5 | ax-bdel 10612 |
. . . . . . . 8
| |
| 6 | 4, 5 | ax-bdan 10606 |
. . . . . . 7
|
| 7 | vex 2604 |
. . . . . . . . . . 11
| |
| 8 | 7 | prid1 3498 |
. . . . . . . . . 10
|
| 9 | ssel 2993 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | mpi 15 |
. . . . . . . . 9
|
| 11 | vex 2604 |
. . . . . . . . . . 11
| |
| 12 | 11 | prid2 3499 |
. . . . . . . . . 10
|
| 13 | ssel 2993 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | mpi 15 |
. . . . . . . . 9
|
| 15 | 10, 14 | jca 300 |
. . . . . . . 8
|
| 16 | prssi 3543 |
. . . . . . . 8
| |
| 17 | 15, 16 | impbii 124 |
. . . . . . 7
|
| 18 | 6, 17 | bd0r 10616 |
. . . . . 6
|
| 19 | 3, 18 | ax-bdan 10606 |
. . . . 5
|
| 20 | eqss 3014 |
. . . . 5
| |
| 21 | 19, 20 | bd0r 10616 |
. . . 4
|
| 22 | 1, 21 | ax-bdor 10607 |
. . 3
|
| 23 | vex 2604 |
. . . 4
| |
| 24 | 23, 7, 11 | elop 3986 |
. . 3
|
| 25 | 22, 24 | bd0r 10616 |
. 2
|
| 26 | 25 | bdelir 10638 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdan 10606 ax-bdor 10607 ax-bdal 10609 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-bdc 10632 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |