ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supeq3 Unicode version

Theorem supeq3 6403
Description: Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
supeq3  |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S ) )

Proof of Theorem supeq3
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 3787 . . . . . . 7  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
21notbid 624 . . . . . 6  |-  ( R  =  S  ->  ( -.  x R y  <->  -.  x S y ) )
32ralbidv 2368 . . . . 5  |-  ( R  =  S  ->  ( A. y  e.  A  -.  x R y  <->  A. y  e.  A  -.  x S y ) )
4 breq 3787 . . . . . . 7  |-  ( R  =  S  ->  (
y R x  <->  y S x ) )
5 breq 3787 . . . . . . . 8  |-  ( R  =  S  ->  (
y R z  <->  y S
z ) )
65rexbidv 2369 . . . . . . 7  |-  ( R  =  S  ->  ( E. z  e.  A  y R z  <->  E. z  e.  A  y S
z ) )
74, 6imbi12d 232 . . . . . 6  |-  ( R  =  S  ->  (
( y R x  ->  E. z  e.  A  y R z )  <->  ( y S x  ->  E. z  e.  A  y S
z ) ) )
87ralbidv 2368 . . . . 5  |-  ( R  =  S  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z )  <->  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S
z ) ) )
93, 8anbi12d 456 . . . 4  |-  ( R  =  S  ->  (
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) )  <->  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  (
y S x  ->  E. z  e.  A  y S z ) ) ) )
109rabbidv 2593 . . 3  |-  ( R  =  S  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S z ) ) } )
1110unieqd 3612 . 2  |-  ( R  =  S  ->  U. {
x  e.  B  | 
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) ) }  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  ( y S x  ->  E. z  e.  A  y S z ) ) } )
12 df-sup 6397 . 2  |-  sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
13 df-sup 6397 . 2  |-  sup ( A ,  B ,  S )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x S y  /\  A. y  e.  B  (
y S x  ->  E. z  e.  A  y S z ) ) }
1411, 12, 133eqtr4g 2138 1  |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    = wceq 1284   A.wral 2348   E.wrex 2349   {crab 2352   U.cuni 3601   class class class wbr 3785   supcsup 6395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-uni 3602  df-br 3786  df-sup 6397
This theorem is referenced by:  infeq3  6428
  Copyright terms: Public domain W3C validator