ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eqcocnv Unicode version

Theorem f1eqcocnv 5451
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )

Proof of Theorem f1eqcocnv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 5176 . . . 4  |-  ( F : A -1-1-> B  -> 
( `' F  o.  F )  =  (  _I  |`  A )
)
2 coeq2 4512 . . . . 5  |-  ( F  =  G  ->  ( `' F  o.  F
)  =  ( `' F  o.  G ) )
32eqeq1d 2089 . . . 4  |-  ( F  =  G  ->  (
( `' F  o.  F )  =  (  _I  |`  A )  <->  ( `' F  o.  G
)  =  (  _I  |`  A ) ) )
41, 3syl5ibcom 153 . . 3  |-  ( F : A -1-1-> B  -> 
( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
54adantr 270 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  ->  ( `' F  o.  G )  =  (  _I  |`  A ) ) )
6 f1fn 5113 . . . . . . 7  |-  ( G : A -1-1-> B  ->  G  Fn  A )
76adantl 271 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  G  Fn  A )
87adantr 270 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  Fn  A )
9 f1fn 5113 . . . . . . 7  |-  ( F : A -1-1-> B  ->  F  Fn  A )
109adantr 270 . . . . . 6  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  F  Fn  A )
1110adantr 270 . . . . 5  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  Fn  A )
12 equid 1629 . . . . . . . . . 10  |-  x  =  x
13 resieq 4640 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x (  _I  |`  A ) x  <->  x  =  x ) )
1412, 13mpbiri 166 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
1514anidms 389 . . . . . . . 8  |-  ( x  e.  A  ->  x
(  _I  |`  A ) x )
1615adantl 271 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x (  _I  |`  A ) x )
17 breq 3787 . . . . . . . 8  |-  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  (
x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1817ad2antlr 472 . . . . . . 7  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  <->  x (  _I  |`  A ) x ) )
1916, 18mpbird 165 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  x ( `' F  o.  G ) x )
20 vex 2604 . . . . . . . . . 10  |-  x  e. 
_V
2120, 20brco 4524 . . . . . . . . 9  |-  ( x ( `' F  o.  G ) x  <->  E. y
( x G y  /\  y `' F x ) )
22 fnfun 5016 . . . . . . . . . . . . . . . . 17  |-  ( G  Fn  A  ->  Fun  G )
237, 22syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  G )
2423adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  G )
25 fndm 5018 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  A  ->  dom  G  =  A )
267, 25syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  G  =  A )
2726eleq2d 2148 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  G  <->  x  e.  A ) )
2827biimpar 291 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  G )
29 funopfvb 5238 . . . . . . . . . . . . . . 15  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( ( G `  x )  =  y  <->  <. x ,  y >.  e.  G ) )
3024, 28, 29syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( G `  x
)  =  y  <->  <. x ,  y >.  e.  G
) )
3130bicomd 139 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( <. x ,  y >.  e.  G  <->  ( G `  x )  =  y ) )
32 df-br 3786 . . . . . . . . . . . . 13  |-  ( x G y  <->  <. x ,  y >.  e.  G
)
33 eqcom 2083 . . . . . . . . . . . . 13  |-  ( y  =  ( G `  x )  <->  ( G `  x )  =  y )
3431, 32, 333bitr4g 221 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  <->  y  =  ( G `  x ) ) )
3534biimpd 142 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x G y  -> 
y  =  ( G `
 x ) ) )
36 fnfun 5016 . . . . . . . . . . . . . . . . 17  |-  ( F  Fn  A  ->  Fun  F )
3710, 36syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  Fun  F )
3837adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  Fun  F )
39 fndm 5018 . . . . . . . . . . . . . . . . . 18  |-  ( F  Fn  A  ->  dom  F  =  A )
4010, 39syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  dom  F  =  A )
4140eleq2d 2148 . . . . . . . . . . . . . . . 16  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( x  e.  dom  F  <->  x  e.  A ) )
4241biimpar 291 . . . . . . . . . . . . . . 15  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  x  e.  dom  F )
43 funopfvb 5238 . . . . . . . . . . . . . . 15  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( F `  x )  =  y  <->  <. x ,  y >.  e.  F ) )
4438, 42, 43syl2anc 403 . . . . . . . . . . . . . 14  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( F `  x
)  =  y  <->  <. x ,  y >.  e.  F
) )
45 df-br 3786 . . . . . . . . . . . . . 14  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
4644, 45syl6rbbr 197 . . . . . . . . . . . . 13  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x F y  <->  ( F `  x )  =  y ) )
47 vex 2604 . . . . . . . . . . . . . 14  |-  y  e. 
_V
4847, 20brcnv 4536 . . . . . . . . . . . . 13  |-  ( y `' F x  <->  x F
y )
49 eqcom 2083 . . . . . . . . . . . . 13  |-  ( y  =  ( F `  x )  <->  ( F `  x )  =  y )
5046, 48, 493bitr4g 221 . . . . . . . . . . . 12  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  <-> 
y  =  ( F `
 x ) ) )
5150biimpd 142 . . . . . . . . . . 11  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
y `' F x  ->  y  =  ( F `  x ) ) )
5235, 51anim12d 328 . . . . . . . . . 10  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( x G y  /\  y `' F x )  ->  (
y  =  ( G `
 x )  /\  y  =  ( F `  x ) ) ) )
5352eximdv 1801 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( E. y ( x G y  /\  y `' F x )  ->  E. y ( y  =  ( G `  x
)  /\  y  =  ( F `  x ) ) ) )
5421, 53syl5bi 150 . . . . . . . 8  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x ( `' F  o.  G ) x  ->  E. y ( y  =  ( G `  x
)  /\  y  =  ( F `  x ) ) ) )
556anim1i 333 . . . . . . . . . 10  |-  ( ( G : A -1-1-> B  /\  x  e.  A
)  ->  ( G  Fn  A  /\  x  e.  A ) )
5655adantll 459 . . . . . . . . 9  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  ( G  Fn  A  /\  x  e.  A )
)
57 funfvex 5212 . . . . . . . . . 10  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( G `  x
)  e.  _V )
5857funfni 5019 . . . . . . . . 9  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( G `  x
)  e.  _V )
59 eqvincg 2719 . . . . . . . . 9  |-  ( ( G `  x )  e.  _V  ->  (
( G `  x
)  =  ( F `
 x )  <->  E. y
( y  =  ( G `  x )  /\  y  =  ( F `  x ) ) ) )
6056, 58, 593syl 17 . . . . . . . 8  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
( G `  x
)  =  ( F `
 x )  <->  E. y
( y  =  ( G `  x )  /\  y  =  ( F `  x ) ) ) )
6154, 60sylibrd 167 . . . . . . 7  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  x  e.  A )  ->  (
x ( `' F  o.  G ) x  -> 
( G `  x
)  =  ( F `
 x ) ) )
6261adantlr 460 . . . . . 6  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( x ( `' F  o.  G ) x  ->  ( G `  x )  =  ( F `  x ) ) )
6319, 62mpd 13 . . . . 5  |-  ( ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G
)  =  (  _I  |`  A ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
648, 11, 63eqfnfvd 5289 . . . 4  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  G  =  F )
6564eqcomd 2086 . . 3  |-  ( ( ( F : A -1-1-> B  /\  G : A -1-1-> B )  /\  ( `' F  o.  G )  =  (  _I  |`  A ) )  ->  F  =  G )
6665ex 113 . 2  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( ( `' F  o.  G
)  =  (  _I  |`  A )  ->  F  =  G ) )
675, 66impbid 127 1  |-  ( ( F : A -1-1-> B  /\  G : A -1-1-> B
)  ->  ( F  =  G  <->  ( `' F  o.  G )  =  (  _I  |`  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   _Vcvv 2601   <.cop 3401   class class class wbr 3785    _I cid 4043   `'ccnv 4362   dom cdm 4363    |` cres 4365    o. ccom 4367   Fun wfun 4916    Fn wfn 4917   -1-1->wf1 4919   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator