| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbviota | Unicode version | ||
| Description: Change bound variables in a description binder. (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| cbviota.1 |
|
| cbviota.2 |
|
| cbviota.3 |
|
| Ref | Expression |
|---|---|
| cbviota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . . . 6
| |
| 2 | nfs1v 1856 |
. . . . . . 7
| |
| 3 | nfv 1461 |
. . . . . . 7
| |
| 4 | 2, 3 | nfbi 1521 |
. . . . . 6
|
| 5 | sbequ12 1694 |
. . . . . . 7
| |
| 6 | equequ1 1638 |
. . . . . . 7
| |
| 7 | 5, 6 | bibi12d 233 |
. . . . . 6
|
| 8 | 1, 4, 7 | cbval 1677 |
. . . . 5
|
| 9 | cbviota.2 |
. . . . . . . 8
| |
| 10 | 9 | nfsb 1863 |
. . . . . . 7
|
| 11 | nfv 1461 |
. . . . . . 7
| |
| 12 | 10, 11 | nfbi 1521 |
. . . . . 6
|
| 13 | nfv 1461 |
. . . . . 6
| |
| 14 | sbequ 1761 |
. . . . . . . 8
| |
| 15 | cbviota.3 |
. . . . . . . . 9
| |
| 16 | cbviota.1 |
. . . . . . . . 9
| |
| 17 | 15, 16 | sbie 1714 |
. . . . . . . 8
|
| 18 | 14, 17 | syl6bb 194 |
. . . . . . 7
|
| 19 | equequ1 1638 |
. . . . . . 7
| |
| 20 | 18, 19 | bibi12d 233 |
. . . . . 6
|
| 21 | 12, 13, 20 | cbval 1677 |
. . . . 5
|
| 22 | 8, 21 | bitri 182 |
. . . 4
|
| 23 | 22 | abbii 2194 |
. . 3
|
| 24 | 23 | unieqi 3611 |
. 2
|
| 25 | dfiota2 4888 |
. 2
| |
| 26 | dfiota2 4888 |
. 2
| |
| 27 | 24, 25, 26 | 3eqtr4i 2111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-sn 3404 df-uni 3602 df-iota 4887 |
| This theorem is referenced by: cbviotav 4893 cbvriota 5498 |
| Copyright terms: Public domain | W3C validator |