ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvriota Unicode version

Theorem cbvriota 5498
Description: Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
cbvriota.1  |-  F/ y
ph
cbvriota.2  |-  F/ x ps
cbvriota.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvriota  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvriota
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2141 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2 sbequ12 1694 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
31, 2anbi12d 456 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  A  /\  [ z  /  x ] ph ) ) )
4 nfv 1461 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
5 nfv 1461 . . . . 5  |-  F/ x  z  e.  A
6 nfs1v 1856 . . . . 5  |-  F/ x [ z  /  x ] ph
75, 6nfan 1497 . . . 4  |-  F/ x
( z  e.  A  /\  [ z  /  x ] ph )
83, 4, 7cbviota 4892 . . 3  |-  ( iota
x ( x  e.  A  /\  ph )
)  =  ( iota z ( z  e.  A  /\  [ z  /  x ] ph ) )
9 eleq1 2141 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
10 sbequ 1761 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
11 cbvriota.2 . . . . . . 7  |-  F/ x ps
12 cbvriota.3 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
1311, 12sbie 1714 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
1410, 13syl6bb 194 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
159, 14anbi12d 456 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  /\  [ z  /  x ] ph )  <->  ( y  e.  A  /\  ps )
) )
16 nfv 1461 . . . . 5  |-  F/ y  z  e.  A
17 cbvriota.1 . . . . . 6  |-  F/ y
ph
1817nfsb 1863 . . . . 5  |-  F/ y [ z  /  x ] ph
1916, 18nfan 1497 . . . 4  |-  F/ y ( z  e.  A  /\  [ z  /  x ] ph )
20 nfv 1461 . . . 4  |-  F/ z ( y  e.  A  /\  ps )
2115, 19, 20cbviota 4892 . . 3  |-  ( iota z ( z  e.  A  /\  [ z  /  x ] ph ) )  =  ( iota y ( y  e.  A  /\  ps ) )
228, 21eqtri 2101 . 2  |-  ( iota
x ( x  e.  A  /\  ph )
)  =  ( iota y ( y  e.  A  /\  ps )
)
23 df-riota 5488 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
24 df-riota 5488 . 2  |-  ( iota_ y  e.  A  ps )  =  ( iota y
( y  e.  A  /\  ps ) )
2522, 23, 243eqtr4i 2111 1  |-  ( iota_ x  e.  A  ph )  =  ( iota_ y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389    e. wcel 1433   [wsb 1685   iotacio 4885   iota_crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-sn 3404  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  cbvriotav  5499
  Copyright terms: Public domain W3C validator