ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrab Unicode version

Theorem cbvrab 2599
Description: Rule to change the bound variable in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by Andrew Salmon, 11-Jul-2011.) (Revised by Mario Carneiro, 9-Oct-2016.)
Hypotheses
Ref Expression
cbvrab.1  |-  F/_ x A
cbvrab.2  |-  F/_ y A
cbvrab.3  |-  F/ y
ph
cbvrab.4  |-  F/ x ps
cbvrab.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrab  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }

Proof of Theorem cbvrab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1461 . . . 4  |-  F/ z ( x  e.  A  /\  ph )
2 cbvrab.1 . . . . . 6  |-  F/_ x A
32nfcri 2213 . . . . 5  |-  F/ x  z  e.  A
4 nfs1v 1856 . . . . 5  |-  F/ x [ z  /  x ] ph
53, 4nfan 1497 . . . 4  |-  F/ x
( z  e.  A  /\  [ z  /  x ] ph )
6 eleq1 2141 . . . . 5  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
7 sbequ12 1694 . . . . 5  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
86, 7anbi12d 456 . . . 4  |-  ( x  =  z  ->  (
( x  e.  A  /\  ph )  <->  ( z  e.  A  /\  [ z  /  x ] ph ) ) )
91, 5, 8cbvab 2201 . . 3  |-  { x  |  ( x  e.  A  /\  ph ) }  =  { z  |  ( z  e.  A  /\  [ z  /  x ] ph ) }
10 cbvrab.2 . . . . . 6  |-  F/_ y A
1110nfcri 2213 . . . . 5  |-  F/ y  z  e.  A
12 cbvrab.3 . . . . . 6  |-  F/ y
ph
1312nfsb 1863 . . . . 5  |-  F/ y [ z  /  x ] ph
1411, 13nfan 1497 . . . 4  |-  F/ y ( z  e.  A  /\  [ z  /  x ] ph )
15 nfv 1461 . . . 4  |-  F/ z ( y  e.  A  /\  ps )
16 eleq1 2141 . . . . 5  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
17 sbequ 1761 . . . . . 6  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  [ y  /  x ] ph ) )
18 cbvrab.4 . . . . . . 7  |-  F/ x ps
19 cbvrab.5 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
2018, 19sbie 1714 . . . . . 6  |-  ( [ y  /  x ] ph 
<->  ps )
2117, 20syl6bb 194 . . . . 5  |-  ( z  =  y  ->  ( [ z  /  x ] ph  <->  ps ) )
2216, 21anbi12d 456 . . . 4  |-  ( z  =  y  ->  (
( z  e.  A  /\  [ z  /  x ] ph )  <->  ( y  e.  A  /\  ps )
) )
2314, 15, 22cbvab 2201 . . 3  |-  { z  |  ( z  e.  A  /\  [ z  /  x ] ph ) }  =  {
y  |  ( y  e.  A  /\  ps ) }
249, 23eqtri 2101 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  =  { y  |  ( y  e.  A  /\  ps ) }
25 df-rab 2357 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
26 df-rab 2357 . 2  |-  { y  e.  A  |  ps }  =  { y  |  ( y  e.  A  /\  ps ) }
2724, 25, 263eqtr4i 2111 1  |-  { x  e.  A  |  ph }  =  { y  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   F/wnf 1389    e. wcel 1433   [wsb 1685   {cab 2067   F/_wnfc 2206   {crab 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357
This theorem is referenced by:  cbvrabv  2600  elrabsf  2852  tfis  4324
  Copyright terms: Public domain W3C validator