| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfis | Unicode version | ||
| Description: Transfinite Induction
Schema. If all ordinal numbers less than a given
number |
| Ref | Expression |
|---|---|
| tfis.1 |
|
| Ref | Expression |
|---|---|
| tfis |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3079 |
. . . . 5
| |
| 2 | nfcv 2219 |
. . . . . . 7
| |
| 3 | nfrab1 2533 |
. . . . . . . . 9
| |
| 4 | 2, 3 | nfss 2992 |
. . . . . . . 8
|
| 5 | 3 | nfcri 2213 |
. . . . . . . 8
|
| 6 | 4, 5 | nfim 1504 |
. . . . . . 7
|
| 7 | dfss3 2989 |
. . . . . . . . 9
| |
| 8 | sseq1 3020 |
. . . . . . . . 9
| |
| 9 | 7, 8 | syl5bbr 192 |
. . . . . . . 8
|
| 10 | rabid 2529 |
. . . . . . . . 9
| |
| 11 | eleq1 2141 |
. . . . . . . . 9
| |
| 12 | 10, 11 | syl5bbr 192 |
. . . . . . . 8
|
| 13 | 9, 12 | imbi12d 232 |
. . . . . . 7
|
| 14 | sbequ 1761 |
. . . . . . . . . . . 12
| |
| 15 | nfcv 2219 |
. . . . . . . . . . . . 13
| |
| 16 | nfcv 2219 |
. . . . . . . . . . . . 13
| |
| 17 | nfv 1461 |
. . . . . . . . . . . . 13
| |
| 18 | nfs1v 1856 |
. . . . . . . . . . . . 13
| |
| 19 | sbequ12 1694 |
. . . . . . . . . . . . 13
| |
| 20 | 15, 16, 17, 18, 19 | cbvrab 2599 |
. . . . . . . . . . . 12
|
| 21 | 14, 20 | elrab2 2751 |
. . . . . . . . . . 11
|
| 22 | 21 | simprbi 269 |
. . . . . . . . . 10
|
| 23 | 22 | ralimi 2426 |
. . . . . . . . 9
|
| 24 | tfis.1 |
. . . . . . . . 9
| |
| 25 | 23, 24 | syl5 32 |
. . . . . . . 8
|
| 26 | 25 | anc2li 322 |
. . . . . . 7
|
| 27 | 2, 6, 13, 26 | vtoclgaf 2663 |
. . . . . 6
|
| 28 | 27 | rgen 2416 |
. . . . 5
|
| 29 | tfi 4323 |
. . . . 5
| |
| 30 | 1, 28, 29 | mp2an 416 |
. . . 4
|
| 31 | 30 | eqcomi 2085 |
. . 3
|
| 32 | 31 | rabeq2i 2598 |
. 2
|
| 33 | 32 | simprbi 269 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-setind 4280 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 |
| This theorem is referenced by: tfis2f 4325 |
| Copyright terms: Public domain | W3C validator |