ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsrexv Unicode version

Theorem ceqsrexv 2725
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexv  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2354 . . 3  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
2 an12 525 . . . 4  |-  ( ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
32exbii 1536 . . 3  |-  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  E. x
( x  e.  B  /\  ( x  =  A  /\  ph ) ) )
41, 3bitr4i 185 . 2  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  =  A  /\  (
x  e.  B  /\  ph ) ) )
5 eleq1 2141 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 ceqsrexv.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 456 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
87ceqsexgv 2724 . . 3  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( A  e.  B  /\  ps )
) )
98bianabs 575 . 2  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ps )
)
104, 9syl5bb 190 1  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603
This theorem is referenced by:  ceqsrexbv  2726  ceqsrex2v  2727  f1oiso  5485  creur  8036  creui  8037
  Copyright terms: Public domain W3C validator