| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsrexv | Unicode version | ||
| Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 |
|
| Ref | Expression |
|---|---|
| ceqsrexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 |
. . 3
| |
| 2 | an12 525 |
. . . 4
| |
| 3 | 2 | exbii 1536 |
. . 3
|
| 4 | 1, 3 | bitr4i 185 |
. 2
|
| 5 | eleq1 2141 |
. . . . 5
| |
| 6 | ceqsrexv.1 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 456 |
. . . 4
|
| 8 | 7 | ceqsexgv 2724 |
. . 3
|
| 9 | 8 | bianabs 575 |
. 2
|
| 10 | 4, 9 | syl5bb 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 |
| This theorem is referenced by: ceqsrexbv 2726 ceqsrex2v 2727 f1oiso 5485 creur 8036 creui 8037 |
| Copyright terms: Public domain | W3C validator |