ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  creui Unicode version

Theorem creui 8037
Description: The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
creui  |-  ( A  e.  CC  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Distinct variable group:    x, y, A

Proof of Theorem creui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7115 . 2  |-  ( A  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w ) ) )
2 simpr 108 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  w  e.  RR )
3 eqcom 2083 . . . . . . . . . 10  |-  ( ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) )  <->  ( x  +  ( _i  x.  y ) )  =  ( z  +  ( _i  x.  w ) ) )
4 cru 7702 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
54ancoms 264 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) )  =  ( z  +  ( _i  x.  w ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
63, 5syl5bb 190 . . . . . . . . 9  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
( x  =  z  /\  y  =  w ) ) )
76anass1rs 535 . . . . . . . 8  |-  ( ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  /\  x  e.  RR )  ->  (
( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  ( x  =  z  /\  y  =  w ) ) )
87rexbidva 2365 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <->  E. x  e.  RR  ( x  =  z  /\  y  =  w
) ) )
9 biidd 170 . . . . . . . . 9  |-  ( x  =  z  ->  (
y  =  w  <->  y  =  w ) )
109ceqsrexv 2725 . . . . . . . 8  |-  ( z  e.  RR  ->  ( E. x  e.  RR  ( x  =  z  /\  y  =  w
)  <->  y  =  w ) )
1110ad2antrr 471 . . . . . . 7  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( x  =  z  /\  y  =  w )  <->  y  =  w ) )
128, 11bitrd 186 . . . . . 6  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  y  e.  RR )  ->  ( E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) )  <-> 
y  =  w ) )
1312ralrimiva 2434 . . . . 5  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  A. y  e.  RR  ( E. x  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  y  =  w ) )
14 reu6i 2783 . . . . 5  |-  ( ( w  e.  RR  /\  A. y  e.  RR  ( E. x  e.  RR  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) )  <->  y  =  w ) )  ->  E! y  e.  RR  E. x  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
152, 13, 14syl2anc 403 . . . 4  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  E! y  e.  RR  E. x  e.  RR  (
z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y
) ) )
16 eqeq1 2087 . . . . . 6  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( A  =  ( x  +  ( _i  x.  y ) )  <->  ( z  +  ( _i  x.  w ) )  =  ( x  +  ( _i  x.  y ) ) ) )
1716rexbidv 2369 . . . . 5  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) )  <->  E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1817reubidv 2537 . . . 4  |-  ( A  =  ( z  +  ( _i  x.  w
) )  ->  ( E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  <->  E! y  e.  RR  E. x  e.  RR  ( z  +  ( _i  x.  w
) )  =  ( x  +  ( _i  x.  y ) ) ) )
1915, 18syl5ibrcom 155 . . 3  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  ( A  =  ( z  +  ( _i  x.  w ) )  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) ) )
2019rexlimivv 2482 . 2  |-  ( E. z  e.  RR  E. w  e.  RR  A  =  ( z  +  ( _i  x.  w
) )  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
211, 20syl 14 1  |-  ( A  e.  CC  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   E!wreu 2350  (class class class)co 5532   CCcc 6979   RRcr 6980   _ici 6983    + caddc 6984    x. cmul 6986
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator