ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsexgv Unicode version

Theorem ceqsexgv 2724
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.)
Hypothesis
Ref Expression
ceqsexgv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexgv  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem ceqsexgv
StepHypRef Expression
1 nfv 1461 . 2  |-  F/ x ps
2 ceqsexgv.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
31, 2ceqsexg 2723 1  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284   E.wex 1421    e. wcel 1433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by:  ceqsrexv  2725  clel3g  2729  elxp4  4828  elxp5  4829  dmfco  5262  fndmdif  5293  fndmin  5295  fmptco  5351  rexrnmpt2  5636  brtpos2  5889  xpsnen  6318  prarloc  6693
  Copyright terms: Public domain W3C validator