![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcom | Unicode version |
Description: Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.) |
Ref | Expression |
---|---|
addcom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addcom 7076 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-addcom 7076 |
This theorem is referenced by: addid2 7247 readdcan 7248 addcomi 7252 addcomd 7259 add12 7266 add32 7267 add42 7270 cnegexlem1 7283 cnegexlem3 7285 cnegex2 7287 subsub23 7313 pncan2 7315 addsub 7319 addsub12 7321 addsubeq4 7323 sub32 7342 pnpcan2 7348 ppncan 7350 sub4 7353 negsubdi2 7367 ltadd2 7523 ltaddnegr 7529 ltaddsub2 7541 leaddsub2 7543 leltadd 7551 ltaddpos2 7557 addge02 7577 conjmulap 7817 recreclt 7978 avgle1 8271 avgle2 8272 nn0nnaddcl 8319 fzen 9062 fzshftral 9125 flqzadd 9300 addmodidr 9375 nn0ennn 9425 iseradd 9463 bernneq2 9594 shftval2 9714 shftval4 9716 crim 9745 resqrexlemover 9896 climshft2 10145 dvdsaddr 10239 divalgb 10325 |
Copyright terms: Public domain | W3C validator |