ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coires1 Unicode version

Theorem coires1 4858
Description: Composition with a restricted identity relation. (Contributed by FL, 19-Jun-2011.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
coires1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )

Proof of Theorem coires1
StepHypRef Expression
1 cocnvcnv1 4851 . . . . 5  |-  ( `' `' A  o.  _I  )  =  ( A  o.  _I  )
2 relcnv 4723 . . . . . 6  |-  Rel  `' `' A
3 coi1 4856 . . . . . 6  |-  ( Rel  `' `' A  ->  ( `' `' A  o.  _I  )  =  `' `' A )
42, 3ax-mp 7 . . . . 5  |-  ( `' `' A  o.  _I  )  =  `' `' A
51, 4eqtr3i 2103 . . . 4  |-  ( A  o.  _I  )  =  `' `' A
65reseq1i 4626 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( `' `' A  |`  B )
7 resco 4845 . . 3  |-  ( ( A  o.  _I  )  |`  B )  =  ( A  o.  (  _I  |`  B ) )
86, 7eqtr3i 2103 . 2  |-  ( `' `' A  |`  B )  =  ( A  o.  (  _I  |`  B ) )
9 rescnvcnv 4803 . 2  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
108, 9eqtr3i 2103 1  |-  ( A  o.  (  _I  |`  B ) )  =  ( A  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1284    _I cid 4043   `'ccnv 4362    |` cres 4365    o. ccom 4367   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375
This theorem is referenced by:  funcoeqres  5177
  Copyright terms: Public domain W3C validator