ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coi1 Unicode version

Theorem coi1 4856
Description: Composition with the identity relation. Part of Theorem 3.7(i) of [Monk1] p. 36. (Contributed by NM, 22-Apr-2004.)
Assertion
Ref Expression
coi1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )

Proof of Theorem coi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 4839 . 2  |-  Rel  ( A  o.  _I  )
2 vex 2604 . . . . . 6  |-  x  e. 
_V
3 vex 2604 . . . . . 6  |-  y  e. 
_V
42, 3opelco 4525 . . . . 5  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  E. z ( x  _I  z  /\  z A y ) )
5 vex 2604 . . . . . . . . . 10  |-  z  e. 
_V
65ideq 4506 . . . . . . . . 9  |-  ( x  _I  z  <->  x  =  z )
7 equcom 1633 . . . . . . . . 9  |-  ( x  =  z  <->  z  =  x )
86, 7bitri 182 . . . . . . . 8  |-  ( x  _I  z  <->  z  =  x )
98anbi1i 445 . . . . . . 7  |-  ( ( x  _I  z  /\  z A y )  <->  ( z  =  x  /\  z A y ) )
109exbii 1536 . . . . . 6  |-  ( E. z ( x  _I  z  /\  z A y )  <->  E. z
( z  =  x  /\  z A y ) )
11 breq1 3788 . . . . . . 7  |-  ( z  =  x  ->  (
z A y  <->  x A
y ) )
122, 11ceqsexv 2638 . . . . . 6  |-  ( E. z ( z  =  x  /\  z A y )  <->  x A
y )
1310, 12bitri 182 . . . . 5  |-  ( E. z ( x  _I  z  /\  z A y )  <->  x A
y )
144, 13bitri 182 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<->  x A y )
15 df-br 3786 . . . 4  |-  ( x A y  <->  <. x ,  y >.  e.  A
)
1614, 15bitri 182 . . 3  |-  ( <.
x ,  y >.  e.  ( A  o.  _I  ) 
<-> 
<. x ,  y >.  e.  A )
1716eqrelriv 4451 . 2  |-  ( ( Rel  ( A  o.  _I  )  /\  Rel  A
)  ->  ( A  o.  _I  )  =  A )
181, 17mpan 414 1  |-  ( Rel 
A  ->  ( A  o.  _I  )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   <.cop 3401   class class class wbr 3785    _I cid 4043    o. ccom 4367   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-co 4372
This theorem is referenced by:  coi2  4857  coires1  4858  relcoi1  4869  fcoi1  5090
  Copyright terms: Public domain W3C validator