ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbriotag Unicode version

Theorem csbriotag 5500
Description: Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.)
Assertion
Ref Expression
csbriotag  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph ) )
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    ph( x, y)    A( x)    B( y)    V( x, y)

Proof of Theorem csbriotag
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 csbeq1 2911 . . 3  |-  ( z  =  A  ->  [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  [_ A  /  x ]_ ( iota_ y  e.  B  ph ) )
2 dfsbcq2 2818 . . . 4  |-  ( z  =  A  ->  ( [ z  /  x ] ph  <->  [. A  /  x ]. ph ) )
32riotabidv 5490 . . 3  |-  ( z  =  A  ->  ( iota_ y  e.  B  [
z  /  x ] ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
)
41, 3eqeq12d 2095 . 2  |-  ( z  =  A  ->  ( [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph ) 
<-> 
[_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph )
) )
5 vex 2604 . . 3  |-  z  e. 
_V
6 nfs1v 1856 . . . 4  |-  F/ x [ z  /  x ] ph
7 nfcv 2219 . . . 4  |-  F/_ x B
86, 7nfriota 5497 . . 3  |-  F/_ x
( iota_ y  e.  B  [ z  /  x ] ph )
9 sbequ12 1694 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  x ] ph ) )
109riotabidv 5490 . . 3  |-  ( x  =  z  ->  ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph ) )
115, 8, 10csbief 2947 . 2  |-  [_ z  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [ z  /  x ] ph )
124, 11vtoclg 2658 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( iota_ y  e.  B  ph )  =  ( iota_ y  e.  B  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   [wsb 1685   [.wsbc 2815   [_csb 2908   iota_crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-sn 3404  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator