ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decmul1 Unicode version

Theorem decmul1 8540
Description: The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
decmul1.p  |-  P  e. 
NN0
decmul1.a  |-  A  e. 
NN0
decmul1.b  |-  B  e. 
NN0
decmul1.n  |-  N  = ; A B
decmul1.0  |-  D  e. 
NN0
decmul1.c  |-  ( A  x.  P )  =  C
decmul1.d  |-  ( B  x.  P )  =  D
Assertion
Ref Expression
decmul1  |-  ( N  x.  P )  = ; C D

Proof of Theorem decmul1
StepHypRef Expression
1 10nn0 8494 . . 3  |- ; 1 0  e.  NN0
2 decmul1.p . . 3  |-  P  e. 
NN0
3 decmul1.a . . 3  |-  A  e. 
NN0
4 decmul1.b . . 3  |-  B  e. 
NN0
5 decmul1.n . . . 4  |-  N  = ; A B
6 dfdec10 8480 . . . 4  |- ; A B  =  ( (; 1 0  x.  A
)  +  B )
75, 6eqtri 2101 . . 3  |-  N  =  ( (; 1 0  x.  A
)  +  B )
8 decmul1.0 . . 3  |-  D  e. 
NN0
9 0nn0 8303 . . 3  |-  0  e.  NN0
103, 2nn0mulcli 8326 . . . . . 6  |-  ( A  x.  P )  e. 
NN0
1110nn0cni 8300 . . . . 5  |-  ( A  x.  P )  e.  CC
1211addid1i 7250 . . . 4  |-  ( ( A  x.  P )  +  0 )  =  ( A  x.  P
)
13 decmul1.c . . . 4  |-  ( A  x.  P )  =  C
1412, 13eqtri 2101 . . 3  |-  ( ( A  x.  P )  +  0 )  =  C
15 decmul1.d . . . . 5  |-  ( B  x.  P )  =  D
1615oveq2i 5543 . . . 4  |-  ( 0  +  ( B  x.  P ) )  =  ( 0  +  D
)
174, 2nn0mulcli 8326 . . . . . 6  |-  ( B  x.  P )  e. 
NN0
1817nn0cni 8300 . . . . 5  |-  ( B  x.  P )  e.  CC
1918addid2i 7251 . . . 4  |-  ( 0  +  ( B  x.  P ) )  =  ( B  x.  P
)
201nn0cni 8300 . . . . . . 7  |- ; 1 0  e.  CC
2120mul01i 7495 . . . . . 6  |-  (; 1 0  x.  0 )  =  0
2221eqcomi 2085 . . . . 5  |-  0  =  (; 1 0  x.  0 )
2322oveq1i 5542 . . . 4  |-  ( 0  +  D )  =  ( (; 1 0  x.  0 )  +  D )
2416, 19, 233eqtr3i 2109 . . 3  |-  ( B  x.  P )  =  ( (; 1 0  x.  0 )  +  D )
251, 2, 3, 4, 7, 8, 9, 14, 24nummul1c 8525 . 2  |-  ( N  x.  P )  =  ( (; 1 0  x.  C
)  +  D )
26 dfdec10 8480 . 2  |- ; C D  =  ( (; 1 0  x.  C
)  +  D )
2725, 26eqtr4i 2104 1  |-  ( N  x.  P )  = ; C D
Colors of variables: wff set class
Syntax hints:    = wceq 1284    e. wcel 1433  (class class class)co 5532   0cc0 6981   1c1 6982    + caddc 6984    x. cmul 6986   NN0cn0 8288  ;cdc 8477
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-sub 7281  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-5 8101  df-6 8102  df-7 8103  df-8 8104  df-9 8105  df-n0 8289  df-dec 8478
This theorem is referenced by:  sq10  9640
  Copyright terms: Public domain W3C validator