ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-imp Unicode version

Definition df-imp 6659
Description: Define multiplication on positive reals. Here we use a simple definition which is similar to df-iplp 6658 or the definition of multiplication on positive reals in Metamath Proof Explorer. This is as opposed to the more complicated definition of multiplication given in Section 11.2.1 of [HoTT], p. (varies), which appears to be motivated by handling negative numbers or handling modified Dedekind cuts in which locatedness is omitted.

This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.)

Assertion
Ref Expression
df-imp  |-  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Distinct variable group:    x, y, q, r, s

Detailed syntax breakdown of Definition df-imp
StepHypRef Expression
1 cmp 6484 . 2  class  .P.
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 cnp 6481 . . 3  class  P.
5 vr . . . . . . . . . 10  setvar  r
65cv 1283 . . . . . . . . 9  class  r
72cv 1283 . . . . . . . . . 10  class  x
8 c1st 5785 . . . . . . . . . 10  class  1st
97, 8cfv 4922 . . . . . . . . 9  class  ( 1st `  x )
106, 9wcel 1433 . . . . . . . 8  wff  r  e.  ( 1st `  x
)
11 vs . . . . . . . . . 10  setvar  s
1211cv 1283 . . . . . . . . 9  class  s
133cv 1283 . . . . . . . . . 10  class  y
1413, 8cfv 4922 . . . . . . . . 9  class  ( 1st `  y )
1512, 14wcel 1433 . . . . . . . 8  wff  s  e.  ( 1st `  y
)
16 vq . . . . . . . . . 10  setvar  q
1716cv 1283 . . . . . . . . 9  class  q
18 cmq 6473 . . . . . . . . . 10  class  .Q
196, 12, 18co 5532 . . . . . . . . 9  class  ( r  .Q  s )
2017, 19wceq 1284 . . . . . . . 8  wff  q  =  ( r  .Q  s
)
2110, 15, 20w3a 919 . . . . . . 7  wff  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
22 cnq 6470 . . . . . . 7  class  Q.
2321, 11, 22wrex 2349 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2423, 5, 22wrex 2349 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) )
2524, 16, 22crab 2352 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) }
26 c2nd 5786 . . . . . . . . . 10  class  2nd
277, 26cfv 4922 . . . . . . . . 9  class  ( 2nd `  x )
286, 27wcel 1433 . . . . . . . 8  wff  r  e.  ( 2nd `  x
)
2913, 26cfv 4922 . . . . . . . . 9  class  ( 2nd `  y )
3012, 29wcel 1433 . . . . . . . 8  wff  s  e.  ( 2nd `  y
)
3128, 30, 20w3a 919 . . . . . . 7  wff  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3231, 11, 22wrex 2349 . . . . . 6  wff  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3332, 5, 22wrex 2349 . . . . 5  wff  E. r  e.  Q.  E. s  e. 
Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) )
3433, 16, 22crab 2352 . . . 4  class  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 2nd `  x
)  /\  s  e.  ( 2nd `  y )  /\  q  =  ( r  .Q  s ) ) }
3525, 34cop 3401 . . 3  class  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >.
362, 3, 4, 4, 35cmpt2 5534 . 2  class  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  x
)  /\  s  e.  ( 1st `  y )  /\  q  =  ( r  .Q  s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
371, 36wceq 1284 1  wff  .P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  x )  /\  s  e.  ( 1st `  y
)  /\  q  =  ( r  .Q  s
) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  x )  /\  s  e.  ( 2nd `  y
)  /\  q  =  ( r  .Q  s
) ) } >. )
Colors of variables: wff set class
This definition is referenced by:  mpvlu  6729  dmmp  6731  mulnqprl  6758  mulnqpru  6759  mulclpr  6762  mulnqprlemrl  6763  mulnqprlemru  6764  mulassprg  6771  distrlem1prl  6772  distrlem1pru  6773  distrlem4prl  6774  distrlem4pru  6775  distrlem5prl  6776  distrlem5pru  6777  1idprl  6780  1idpru  6781  recexprlem1ssl  6823  recexprlem1ssu  6824  recexprlemss1l  6825  recexprlemss1u  6826
  Copyright terms: Public domain W3C validator