![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-imp | Unicode version |
Description: Define multiplication on
positive reals. Here we use a simple
definition which is similar to df-iplp 6658 or the definition of
multiplication on positive reals in Metamath Proof Explorer. This is as
opposed to the more complicated definition of multiplication given in
Section 11.2.1 of [HoTT], p. (varies),
which appears to be motivated by
handling negative numbers or handling modified Dedekind cuts in which
locatedness is omitted.
This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by Jim Kingdon, 29-Sep-2019.) |
Ref | Expression |
---|---|
df-imp |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmp 6484 |
. 2
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | vy |
. . 3
![]() ![]() | |
4 | cnp 6481 |
. . 3
![]() ![]() | |
5 | vr |
. . . . . . . . . 10
![]() ![]() | |
6 | 5 | cv 1283 |
. . . . . . . . 9
![]() ![]() |
7 | 2 | cv 1283 |
. . . . . . . . . 10
![]() ![]() |
8 | c1st 5785 |
. . . . . . . . . 10
![]() ![]() | |
9 | 7, 8 | cfv 4922 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
10 | 6, 9 | wcel 1433 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | vs |
. . . . . . . . . 10
![]() ![]() | |
12 | 11 | cv 1283 |
. . . . . . . . 9
![]() ![]() |
13 | 3 | cv 1283 |
. . . . . . . . . 10
![]() ![]() |
14 | 13, 8 | cfv 4922 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
15 | 12, 14 | wcel 1433 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | vq |
. . . . . . . . . 10
![]() ![]() | |
17 | 16 | cv 1283 |
. . . . . . . . 9
![]() ![]() |
18 | cmq 6473 |
. . . . . . . . . 10
![]() ![]() | |
19 | 6, 12, 18 | co 5532 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
20 | 17, 19 | wceq 1284 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 10, 15, 20 | w3a 919 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | cnq 6470 |
. . . . . . 7
![]() ![]() | |
23 | 21, 11, 22 | wrex 2349 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23, 5, 22 | wrex 2349 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 24, 16, 22 | crab 2352 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | c2nd 5786 |
. . . . . . . . . 10
![]() ![]() | |
27 | 7, 26 | cfv 4922 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
28 | 6, 27 | wcel 1433 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 13, 26 | cfv 4922 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
30 | 12, 29 | wcel 1433 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 28, 30, 20 | w3a 919 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31, 11, 22 | wrex 2349 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32, 5, 22 | wrex 2349 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33, 16, 22 | crab 2352 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 25, 34 | cop 3401 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 2, 3, 4, 4, 35 | cmpt2 5534 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 1, 36 | wceq 1284 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: mpvlu 6729 dmmp 6731 mulnqprl 6758 mulnqpru 6759 mulclpr 6762 mulnqprlemrl 6763 mulnqprlemru 6764 mulassprg 6771 distrlem1prl 6772 distrlem1pru 6773 distrlem4prl 6774 distrlem4pru 6775 distrlem5prl 6776 distrlem5pru 6777 1idprl 6780 1idpru 6781 recexprlem1ssl 6823 recexprlem1ssu 6824 recexprlemss1l 6825 recexprlemss1u 6826 |
Copyright terms: Public domain | W3C validator |