ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem1pru Unicode version

Theorem distrlem1pru 6773
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem1pru  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )

Proof of Theorem distrlem1pru
Dummy variables  x  y  z  w  v  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 6727 . . . . 5  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
2 df-imp 6659 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  z  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  y )  /\  h  e.  ( 1st `  z
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  y )  /\  h  e.  ( 2nd `  z
)  /\  f  =  ( g  .Q  h
) ) } >. )
3 mulclnq 6566 . . . . . 6  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
42, 3genpelvu 6703 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
51, 4sylan2 280 . . . 4  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  C  e.  P. )
)  ->  ( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A
) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
653impb 1134 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C ) ) w  =  ( x  .Q  v ) ) )
7 df-iplp 6658 . . . . . . . . . . 11  |-  +P.  =  ( w  e.  P. ,  x  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  x
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  x
)  /\  f  =  ( g  +Q  h
) ) } >. )
8 addclnq 6565 . . . . . . . . . . 11  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
97, 8genpelvu 6703 . . . . . . . . . 10  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( v  e.  ( 2nd `  ( B  +P.  C ) )  <->  E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
) ) )
1093adant1 956 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
1110adantr 270 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  <->  E. y  e.  ( 2nd `  B
) E. z  e.  ( 2nd `  C
) v  =  ( y  +Q  z ) ) )
12 prop 6665 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
13 elprnqu 6672 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1412, 13sylan 277 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
15143ad2antl1 1100 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  ->  x  e.  Q. )
1615adantrr 462 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  x  e.  Q. )
1716adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  x  e.  Q. )
18 prop 6665 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 elprnqu 6672 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
2018, 19sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  -> 
y  e.  Q. )
21 prop 6665 . . . . . . . . . . . . . . . . . 18  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
22 elprnqu 6672 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2321, 22sylan 277 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  P.  /\  z  e.  ( 2nd `  C ) )  -> 
z  e.  Q. )
2420, 23anim12i 331 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  P.  /\  y  e.  ( 2nd `  B ) )  /\  ( C  e.  P.  /\  z  e.  ( 2nd `  C ) ) )  ->  ( y  e. 
Q.  /\  z  e.  Q. ) )
2524an4s 552 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
26253adantl1 1094 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) ) )  ->  (
y  e.  Q.  /\  z  e.  Q. )
)
2726ad2ant2r 492 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( y  e.  Q.  /\  z  e.  Q. )
)
28 3anass 923 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  <->  ( x  e.  Q.  /\  ( y  e.  Q.  /\  z  e.  Q. ) ) )
2917, 27, 28sylanbrc 408 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )
)
30 simprr 498 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  w  =  ( x  .Q  v ) )
31 simpr 108 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  v  =  ( y  +Q  z ) )
3230, 31anim12i 331 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) ) )
33 oveq2 5540 . . . . . . . . . . . . . . 15  |-  ( v  =  ( y  +Q  z )  ->  (
x  .Q  v )  =  ( x  .Q  ( y  +Q  z
) ) )
3433eqeq2d 2092 . . . . . . . . . . . . . 14  |-  ( v  =  ( y  +Q  z )  ->  (
w  =  ( x  .Q  v )  <->  w  =  ( x  .Q  (
y  +Q  z ) ) ) )
3534biimpac 292 . . . . . . . . . . . . 13  |-  ( ( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( x  .Q  ( y  +Q  z
) ) )
36 distrnqg 6577 . . . . . . . . . . . . . 14  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
3736eqeq2d 2092 . . . . . . . . . . . . 13  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
w  =  ( x  .Q  ( y  +Q  z ) )  <->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3835, 37syl5ib 152 . . . . . . . . . . . 12  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( w  =  ( x  .Q  v )  /\  v  =  ( y  +Q  z ) )  ->  w  =  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
3929, 32, 38sylc 61 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  =  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) )
40 mulclpr 6762 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
41403adant3 958 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
4241ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  B
)  e.  P. )
43 mulclpr 6762 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
44433adant2 957 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
4544ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( A  .P.  C
)  e.  P. )
46 simpll 495 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  y  e.  ( 2nd `  B
) )
472, 3genppreclu 6705 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
48473adant3 958 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  ->  ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
4948impl 372 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  y  e.  ( 2nd `  B
) )  ->  (
x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) ) )
5049adantlrr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  y  e.  ( 2nd `  B ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
5146, 50sylan2 280 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  y
)  e.  ( 2nd `  ( A  .P.  B
) ) )
52 simplr 496 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) )  ->  z  e.  ( 2nd `  C
) )
532, 3genppreclu 6705 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( ( x  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
54533adant2 957 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) )  ->  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )
5554impl 372 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  x  e.  ( 2nd `  A ) )  /\  z  e.  ( 2nd `  C
) )  ->  (
x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )
5655adantlrr 466 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  z  e.  ( 2nd `  C ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
5752, 56sylan2 280 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( x  .Q  z
)  e.  ( 2nd `  ( A  .P.  C
) ) )
587, 8genppreclu 6705 . . . . . . . . . . . . 13  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) )  ->  ( (
x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
5958imp 122 . . . . . . . . . . . 12  |-  ( ( ( ( A  .P.  B )  e.  P.  /\  ( A  .P.  C )  e.  P. )  /\  ( ( x  .Q  y )  e.  ( 2nd `  ( A  .P.  B ) )  /\  ( x  .Q  z )  e.  ( 2nd `  ( A  .P.  C ) ) ) )  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) )
6042, 45, 51, 57, 59syl22anc 1170 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6139, 60eqeltrd 2155 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A
)  /\  w  =  ( x  .Q  v
) ) )  /\  ( ( y  e.  ( 2nd `  B
)  /\  z  e.  ( 2nd `  C ) )  /\  v  =  ( y  +Q  z
) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
6261exp32 357 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
( y  e.  ( 2nd `  B )  /\  z  e.  ( 2nd `  C ) )  ->  ( v  =  ( y  +Q  z )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6362rexlimdvv 2483 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  ( E. y  e.  ( 2nd `  B ) E. z  e.  ( 2nd `  C ) v  =  ( y  +Q  z
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
6411, 63sylbid 148 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( x  e.  ( 2nd `  A )  /\  w  =  ( x  .Q  v ) ) )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) )
6564exp32 357 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
w  =  ( x  .Q  v )  -> 
( v  e.  ( 2nd `  ( B  +P.  C ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6665com34 82 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
x  e.  ( 2nd `  A )  ->  (
v  e.  ( 2nd `  ( B  +P.  C
) )  ->  (
w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) ) ) )
6766impd 251 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( x  e.  ( 2nd `  A )  /\  v  e.  ( 2nd `  ( B  +P.  C ) ) )  ->  ( w  =  ( x  .Q  v )  ->  w  e.  ( 2nd `  (
( A  .P.  B
)  +P.  ( A  .P.  C ) ) ) ) ) )
6867rexlimdvv 2483 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 2nd `  A ) E. v  e.  ( 2nd `  ( B  +P.  C
) ) w  =  ( x  .Q  v
)  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
696, 68sylbid 148 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  ->  w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) ) )
7069ssrdv 3005 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349    C_ wss 2973   <.cop 3401   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    .Q cmq 6473   P.cnp 6481    +P. cpp 6483    .P. cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-imp 6659
This theorem is referenced by:  distrprg  6778
  Copyright terms: Public domain W3C validator