| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrlem4prl | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrlem4prl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 6591 |
. . . . . . 7
| |
| 2 | 1 | adantl 271 |
. . . . . 6
|
| 3 | simp1 938 |
. . . . . . 7
| |
| 4 | simpll 495 |
. . . . . . 7
| |
| 5 | prop 6665 |
. . . . . . . 8
| |
| 6 | elprnql 6671 |
. . . . . . . 8
| |
| 7 | 5, 6 | sylan 277 |
. . . . . . 7
|
| 8 | 3, 4, 7 | syl2an 283 |
. . . . . 6
|
| 9 | simprl 497 |
. . . . . . 7
| |
| 10 | elprnql 6671 |
. . . . . . . 8
| |
| 11 | 5, 10 | sylan 277 |
. . . . . . 7
|
| 12 | 3, 9, 11 | syl2an 283 |
. . . . . 6
|
| 13 | simpl2 942 |
. . . . . . 7
| |
| 14 | simprlr 504 |
. . . . . . 7
| |
| 15 | prop 6665 |
. . . . . . . 8
| |
| 16 | elprnql 6671 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylan 277 |
. . . . . . 7
|
| 18 | 13, 14, 17 | syl2anc 403 |
. . . . . 6
|
| 19 | mulcomnqg 6573 |
. . . . . . 7
| |
| 20 | 19 | adantl 271 |
. . . . . 6
|
| 21 | 2, 8, 12, 18, 20 | caovord2d 5690 |
. . . . 5
|
| 22 | ltanqg 6590 |
. . . . . . 7
| |
| 23 | 22 | adantl 271 |
. . . . . 6
|
| 24 | mulclnq 6566 |
. . . . . . 7
| |
| 25 | 8, 18, 24 | syl2anc 403 |
. . . . . 6
|
| 26 | mulclnq 6566 |
. . . . . . 7
| |
| 27 | 12, 18, 26 | syl2anc 403 |
. . . . . 6
|
| 28 | simpl3 943 |
. . . . . . . 8
| |
| 29 | simprrr 506 |
. . . . . . . 8
| |
| 30 | prop 6665 |
. . . . . . . . 9
| |
| 31 | elprnql 6671 |
. . . . . . . . 9
| |
| 32 | 30, 31 | sylan 277 |
. . . . . . . 8
|
| 33 | 28, 29, 32 | syl2anc 403 |
. . . . . . 7
|
| 34 | mulclnq 6566 |
. . . . . . 7
| |
| 35 | 12, 33, 34 | syl2anc 403 |
. . . . . 6
|
| 36 | addcomnqg 6571 |
. . . . . . 7
| |
| 37 | 36 | adantl 271 |
. . . . . 6
|
| 38 | 23, 25, 27, 35, 37 | caovord2d 5690 |
. . . . 5
|
| 39 | 21, 38 | bitrd 186 |
. . . 4
|
| 40 | simpl1 941 |
. . . . . 6
| |
| 41 | addclpr 6727 |
. . . . . . . 8
| |
| 42 | 41 | 3adant1 956 |
. . . . . . 7
|
| 43 | 42 | adantr 270 |
. . . . . 6
|
| 44 | mulclpr 6762 |
. . . . . 6
| |
| 45 | 40, 43, 44 | syl2anc 403 |
. . . . 5
|
| 46 | distrnqg 6577 |
. . . . . . 7
| |
| 47 | 12, 18, 33, 46 | syl3anc 1169 |
. . . . . 6
|
| 48 | simprrl 505 |
. . . . . . 7
| |
| 49 | df-iplp 6658 |
. . . . . . . . . 10
| |
| 50 | addclnq 6565 |
. . . . . . . . . 10
| |
| 51 | 49, 50 | genpprecll 6704 |
. . . . . . . . 9
|
| 52 | 51 | imp 122 |
. . . . . . . 8
|
| 53 | 13, 28, 14, 29, 52 | syl22anc 1170 |
. . . . . . 7
|
| 54 | df-imp 6659 |
. . . . . . . . 9
| |
| 55 | mulclnq 6566 |
. . . . . . . . 9
| |
| 56 | 54, 55 | genpprecll 6704 |
. . . . . . . 8
|
| 57 | 56 | imp 122 |
. . . . . . 7
|
| 58 | 40, 43, 48, 53, 57 | syl22anc 1170 |
. . . . . 6
|
| 59 | 47, 58 | eqeltrrd 2156 |
. . . . 5
|
| 60 | prop 6665 |
. . . . . 6
| |
| 61 | prcdnql 6674 |
. . . . . 6
| |
| 62 | 60, 61 | sylan 277 |
. . . . 5
|
| 63 | 45, 59, 62 | syl2anc 403 |
. . . 4
|
| 64 | 39, 63 | sylbid 148 |
. . 3
|
| 65 | 2, 12, 8, 33, 20 | caovord2d 5690 |
. . . . 5
|
| 66 | mulclnq 6566 |
. . . . . . 7
| |
| 67 | 8, 33, 66 | syl2anc 403 |
. . . . . 6
|
| 68 | ltanqg 6590 |
. . . . . 6
| |
| 69 | 35, 67, 25, 68 | syl3anc 1169 |
. . . . 5
|
| 70 | 65, 69 | bitrd 186 |
. . . 4
|
| 71 | distrnqg 6577 |
. . . . . . 7
| |
| 72 | 8, 18, 33, 71 | syl3anc 1169 |
. . . . . 6
|
| 73 | simprll 503 |
. . . . . . 7
| |
| 74 | 54, 55 | genpprecll 6704 |
. . . . . . . 8
|
| 75 | 74 | imp 122 |
. . . . . . 7
|
| 76 | 40, 43, 73, 53, 75 | syl22anc 1170 |
. . . . . 6
|
| 77 | 72, 76 | eqeltrrd 2156 |
. . . . 5
|
| 78 | prcdnql 6674 |
. . . . . 6
| |
| 79 | 60, 78 | sylan 277 |
. . . . 5
|
| 80 | 45, 77, 79 | syl2anc 403 |
. . . 4
|
| 81 | 70, 80 | sylbid 148 |
. . 3
|
| 82 | 64, 81 | jaod 669 |
. 2
|
| 83 | ltsonq 6588 |
. . . . 5
| |
| 84 | nqtri3or 6586 |
. . . . 5
| |
| 85 | 83, 84 | sotritrieq 4080 |
. . . 4
|
| 86 | 8, 12, 85 | syl2anc 403 |
. . 3
|
| 87 | oveq1 5539 |
. . . . . . 7
| |
| 88 | 87 | oveq2d 5548 |
. . . . . 6
|
| 89 | 72, 88 | sylan9eq 2133 |
. . . . 5
|
| 90 | 76 | adantr 270 |
. . . . 5
|
| 91 | 89, 90 | eqeltrrd 2156 |
. . . 4
|
| 92 | 91 | ex 113 |
. . 3
|
| 93 | 86, 92 | sylbird 168 |
. 2
|
| 94 | ltdcnq 6587 |
. . . . 5
| |
| 95 | ltdcnq 6587 |
. . . . . 6
| |
| 96 | 95 | ancoms 264 |
. . . . 5
|
| 97 | dcor 876 |
. . . . 5
| |
| 98 | 94, 96, 97 | sylc 61 |
. . . 4
|
| 99 | 8, 12, 98 | syl2anc 403 |
. . 3
|
| 100 | df-dc 776 |
. . 3
| |
| 101 | 99, 100 | sylib 120 |
. 2
|
| 102 | 82, 93, 101 | mpjaod 670 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-eprel 4044 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-irdg 5980 df-1o 6024 df-2o 6025 df-oadd 6028 df-omul 6029 df-er 6129 df-ec 6131 df-qs 6135 df-ni 6494 df-pli 6495 df-mi 6496 df-lti 6497 df-plpq 6534 df-mpq 6535 df-enq 6537 df-nqqs 6538 df-plqqs 6539 df-mqqs 6540 df-1nqqs 6541 df-rq 6542 df-ltnqqs 6543 df-enq0 6614 df-nq0 6615 df-0nq0 6616 df-plq0 6617 df-mq0 6618 df-inp 6656 df-iplp 6658 df-imp 6659 |
| This theorem is referenced by: distrlem5prl 6776 |
| Copyright terms: Public domain | W3C validator |