ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem4prl Unicode version

Theorem distrlem4prl 6774
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem4prl  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Distinct variable groups:    x, y, z, f, A    x, B, y, z, f    x, C, y, z, f

Proof of Theorem distrlem4prl
Dummy variables  w  v  u  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6591 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
21adantl 271 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  .Q  w )  <Q  (
u  .Q  v ) ) )
3 simp1 938 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  A  e.  P. )
4 simpll 495 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  x  e.  ( 1st `  A
) )
5 prop 6665 . . . . . . . 8  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
6 elprnql 6671 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
75, 6sylan 277 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  ->  x  e.  Q. )
83, 4, 7syl2an 283 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  Q. )
9 simprl 497 . . . . . . 7  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  f  e.  ( 1st `  A
) )
10 elprnql 6671 . . . . . . . 8  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
115, 10sylan 277 . . . . . . 7  |-  ( ( A  e.  P.  /\  f  e.  ( 1st `  A ) )  -> 
f  e.  Q. )
123, 9, 11syl2an 283 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  Q. )
13 simpl2 942 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  B  e.  P. )
14 simprlr 504 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  ( 1st `  B ) )
15 prop 6665 . . . . . . . 8  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
16 elprnql 6671 . . . . . . . 8  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1715, 16sylan 277 . . . . . . 7  |-  ( ( B  e.  P.  /\  y  e.  ( 1st `  B ) )  -> 
y  e.  Q. )
1813, 14, 17syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
y  e.  Q. )
19 mulcomnqg 6573 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  .Q  v
)  =  ( v  .Q  w ) )
2019adantl 271 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  .Q  v )  =  ( v  .Q  w ) )
212, 8, 12, 18, 20caovord2d 5690 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( x  .Q  y ) 
<Q  ( f  .Q  y
) ) )
22 ltanqg 6590 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )  ->  (
w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
2322adantl 271 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q.  /\  u  e.  Q. )
)  ->  ( w  <Q  v  <->  ( u  +Q  w )  <Q  (
u  +Q  v ) ) )
24 mulclnq 6566 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  e.  Q. )
258, 18, 24syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  y
)  e.  Q. )
26 mulclnq 6566 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q. )  ->  ( f  .Q  y
)  e.  Q. )
2712, 18, 26syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  y
)  e.  Q. )
28 simpl3 943 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  C  e.  P. )
29 simprrr 506 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  ( 1st `  C ) )
30 prop 6665 . . . . . . . . 9  |-  ( C  e.  P.  ->  <. ( 1st `  C ) ,  ( 2nd `  C
) >.  e.  P. )
31 elprnql 6671 . . . . . . . . 9  |-  ( (
<. ( 1st `  C
) ,  ( 2nd `  C ) >.  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3230, 31sylan 277 . . . . . . . 8  |-  ( ( C  e.  P.  /\  z  e.  ( 1st `  C ) )  -> 
z  e.  Q. )
3328, 29, 32syl2anc 403 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
z  e.  Q. )
34 mulclnq 6566 . . . . . . 7  |-  ( ( f  e.  Q.  /\  z  e.  Q. )  ->  ( f  .Q  z
)  e.  Q. )
3512, 33, 34syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  z
)  e.  Q. )
36 addcomnqg 6571 . . . . . . 7  |-  ( ( w  e.  Q.  /\  v  e.  Q. )  ->  ( w  +Q  v
)  =  ( v  +Q  w ) )
3736adantl 271 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  ( w  e.  Q.  /\  v  e.  Q. )
)  ->  ( w  +Q  v )  =  ( v  +Q  w ) )
3823, 25, 27, 35, 37caovord2d 5690 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  <Q  (
f  .Q  y )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
f  .Q  y )  +Q  ( f  .Q  z ) ) ) )
3921, 38bitrd 186 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( f  .Q  y )  +Q  (
f  .Q  z ) ) ) )
40 simpl1 941 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  A  e.  P. )
41 addclpr 6727 . . . . . . . 8  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C
)  e.  P. )
42413adant1 956 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( B  +P.  C )  e. 
P. )
4342adantr 270 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( B  +P.  C
)  e.  P. )
44 mulclpr 6762 . . . . . 6  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
4540, 43, 44syl2anc 403 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( A  .P.  ( B  +P.  C ) )  e.  P. )
46 distrnqg 6577 . . . . . . 7  |-  ( ( f  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
f  .Q  ( y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z
) ) )
4712, 18, 33, 46syl3anc 1169 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  =  ( ( f  .Q  y )  +Q  ( f  .Q  z ) ) )
48 simprrl 505 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
f  e.  ( 1st `  A ) )
49 df-iplp 6658 . . . . . . . . . 10  |-  +P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  +Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  +Q  h
) ) } >. )
50 addclnq 6565 . . . . . . . . . 10  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
5149, 50genpprecll 6704 . . . . . . . . 9  |-  ( ( B  e.  P.  /\  C  e.  P. )  ->  ( ( y  e.  ( 1st `  B
)  /\  z  e.  ( 1st `  C ) )  ->  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )
5251imp 122 . . . . . . . 8  |-  ( ( ( B  e.  P.  /\  C  e.  P. )  /\  ( y  e.  ( 1st `  B )  /\  z  e.  ( 1st `  C ) ) )  ->  (
y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )
5313, 28, 14, 29, 52syl22anc 1170 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( y  +Q  z
)  e.  ( 1st `  ( B  +P.  C
) ) )
54 df-imp 6659 . . . . . . . . 9  |-  .P.  =  ( u  e.  P. ,  v  e.  P.  |->  <. { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  u )  /\  h  e.  ( 1st `  v
)  /\  w  =  ( g  .Q  h
) ) } ,  { w  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  u )  /\  h  e.  ( 2nd `  v
)  /\  w  =  ( g  .Q  h
) ) } >. )
55 mulclnq 6566 . . . . . . . . 9  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
5654, 55genpprecll 6704 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( f  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( f  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
5756imp 122 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( f  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
f  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5840, 43, 48, 53, 57syl22anc 1170 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
5947, 58eqeltrrd 2156 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
60 prop 6665 . . . . . 6  |-  ( ( A  .P.  ( B  +P.  C ) )  e.  P.  ->  <. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P. )
61 prcdnql 6674 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( f  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6260, 61sylan 277 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( f  .Q  y )  +Q  (
f  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6345, 59, 62syl2anc 403 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( f  .Q  y
)  +Q  ( f  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
6439, 63sylbid 148 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  <Q  f  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
652, 12, 8, 33, 20caovord2d 5690 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( f  .Q  z ) 
<Q  ( x  .Q  z
) ) )
66 mulclnq 6566 . . . . . . 7  |-  ( ( x  e.  Q.  /\  z  e.  Q. )  ->  ( x  .Q  z
)  e.  Q. )
678, 33, 66syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  z
)  e.  Q. )
68 ltanqg 6590 . . . . . 6  |-  ( ( ( f  .Q  z
)  e.  Q.  /\  ( x  .Q  z
)  e.  Q.  /\  ( x  .Q  y
)  e.  Q. )  ->  ( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
6935, 67, 25, 68syl3anc 1169 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( f  .Q  z )  <Q  (
x  .Q  z )  <-> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  <Q  ( (
x  .Q  y )  +Q  ( x  .Q  z ) ) ) )
7065, 69bitrd 186 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  <->  ( ( x  .Q  y
)  +Q  ( f  .Q  z ) ) 
<Q  ( ( x  .Q  y )  +Q  (
x  .Q  z ) ) ) )
71 distrnqg 6577 . . . . . . 7  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  .Q  ( y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z
) ) )
728, 18, 33, 71syl3anc 1169 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( x  .Q  z ) ) )
73 simprll 503 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  ->  x  e.  ( 1st `  A ) )
7454, 55genpprecll 6704 . . . . . . . 8  |-  ( ( A  e.  P.  /\  ( B  +P.  C )  e.  P. )  -> 
( ( x  e.  ( 1st `  A
)  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) )  ->  ( x  .Q  ( y  +Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7574imp 122 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  ( B  +P.  C
)  e.  P. )  /\  ( x  e.  ( 1st `  A )  /\  ( y  +Q  z )  e.  ( 1st `  ( B  +P.  C ) ) ) )  ->  (
x  .Q  ( y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7640, 43, 73, 53, 75syl22anc 1170 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
7772, 76eqeltrrd 2156 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
78 prcdnql 6674 . . . . . 6  |-  ( (
<. ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ,  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) >.  e.  P.  /\  ( ( x  .Q  y )  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
7960, 78sylan 277 . . . . 5  |-  ( ( ( A  .P.  ( B  +P.  C ) )  e.  P.  /\  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )  ->  ( ( ( x  .Q  y )  +Q  ( f  .Q  z ) )  <Q 
( ( x  .Q  y )  +Q  (
x  .Q  z ) )  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8045, 77, 79syl2anc 403 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  <Q  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8170, 80sylbid 148 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( f  <Q  x  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
8264, 81jaod 669 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  ->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
83 ltsonq 6588 . . . . 5  |-  <Q  Or  Q.
84 nqtri3or 6586 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  <Q  f  \/  x  =  f  \/  f  <Q  x ) )
8583, 84sotritrieq 4080 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  ->  ( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
868, 12, 85syl2anc 403 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  <->  -.  ( x  <Q  f  \/  f  <Q  x ) ) )
87 oveq1 5539 . . . . . . 7  |-  ( x  =  f  ->  (
x  .Q  z )  =  ( f  .Q  z ) )
8887oveq2d 5548 . . . . . 6  |-  ( x  =  f  ->  (
( x  .Q  y
)  +Q  ( x  .Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) ) )
8972, 88sylan9eq 2133 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
9076adantr 270 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( x  .Q  (
y  +Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9189, 90eqeltrrd 2156 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  /\  x  =  f )  ->  ( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
9291ex 113 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( x  =  f  ->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
9386, 92sylbird 168 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( -.  ( x 
<Q  f  \/  f  <Q  x )  ->  (
( x  .Q  y
)  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
94 ltdcnq 6587 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  x 
<Q  f )
95 ltdcnq 6587 . . . . . 6  |-  ( ( f  e.  Q.  /\  x  e.  Q. )  -> DECID  f 
<Q  x )
9695ancoms 264 . . . . 5  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  f 
<Q  x )
97 dcor 876 . . . . 5  |-  (DECID  x  <Q  f  ->  (DECID  f  <Q  x  -> DECID  ( x 
<Q  f  \/  f  <Q  x ) ) )
9894, 96, 97sylc 61 . . . 4  |-  ( ( x  e.  Q.  /\  f  e.  Q. )  -> DECID  ( x  <Q  f  \/  f  <Q  x ) )
998, 12, 98syl2anc 403 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> DECID  (
x  <Q  f  \/  f  <Q  x ) )
100 df-dc 776 . . 3  |-  (DECID  ( x 
<Q  f  \/  f  <Q  x )  <->  ( (
x  <Q  f  \/  f  <Q  x )  \/  -.  ( x  <Q  f  \/  f  <Q  x )
) )
10199, 100sylib 120 . 2  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  <Q  f  \/  f  <Q  x
)  \/  -.  (
x  <Q  f  \/  f  <Q  x ) ) )
10282, 93, 101mpjaod 670 1  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661  DECID wdc 775    /\ w3a 919    = wceq 1284    e. wcel 1433   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    .Q cmq 6473    <Q cltq 6475   P.cnp 6481    +P. cpp 6483    .P. cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-imp 6659
This theorem is referenced by:  distrlem5prl  6776
  Copyright terms: Public domain W3C validator