ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdm2 Unicode version

Theorem dfdm2 4872
Description: Alternate definition of domain df-dm 4373 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2  |-  dom  A  =  U. U. ( `' A  o.  A )

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 4538 . . . . . 6  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  `' `' A )
2 cocnvcnv2 4852 . . . . . 6  |-  ( `' A  o.  `' `' A )  =  ( `' A  o.  A
)
31, 2eqtri 2101 . . . . 5  |-  `' ( `' A  o.  A
)  =  ( `' A  o.  A )
43unieqi 3611 . . . 4  |-  U. `' ( `' A  o.  A
)  =  U. ( `' A  o.  A
)
54unieqi 3611 . . 3  |-  U. U. `' ( `' A  o.  A )  =  U. U. ( `' A  o.  A )
6 unidmrn 4870 . . 3  |-  U. U. `' ( `' A  o.  A )  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
75, 6eqtr3i 2103 . 2  |-  U. U. ( `' A  o.  A
)  =  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )
8 df-rn 4374 . . . . 5  |-  ran  A  =  dom  `' A
98eqcomi 2085 . . . 4  |-  dom  `' A  =  ran  A
10 dmcoeq 4622 . . . 4  |-  ( dom  `' A  =  ran  A  ->  dom  ( `' A  o.  A )  =  dom  A )
119, 10ax-mp 7 . . 3  |-  dom  ( `' A  o.  A
)  =  dom  A
12 rncoeq 4623 . . . . 5  |-  ( dom  `' A  =  ran  A  ->  ran  ( `' A  o.  A )  =  ran  `' A )
139, 12ax-mp 7 . . . 4  |-  ran  ( `' A  o.  A
)  =  ran  `' A
14 dfdm4 4545 . . . 4  |-  dom  A  =  ran  `' A
1513, 14eqtr4i 2104 . . 3  |-  ran  ( `' A  o.  A
)  =  dom  A
1611, 15uneq12i 3124 . 2  |-  ( dom  ( `' A  o.  A )  u.  ran  ( `' A  o.  A
) )  =  ( dom  A  u.  dom  A )
17 unidm 3115 . 2  |-  ( dom 
A  u.  dom  A
)  =  dom  A
187, 16, 173eqtrri 2106 1  |-  dom  A  =  U. U. ( `' A  o.  A )
Colors of variables: wff set class
Syntax hints:    = wceq 1284    u. cun 2971   U.cuni 3601   `'ccnv 4362   dom cdm 4363   ran crn 4364    o. ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator