ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpm Unicode version

Theorem unixpm 4873
Description: The double class union of an inhabited cross product is the union of its members. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
unixpm  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem unixpm
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4465 . . 3  |-  Rel  ( A  X.  B )
2 relfld 4866 . . 3  |-  ( Rel  ( A  X.  B
)  ->  U. U. ( A  X.  B )  =  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) ) )
31, 2ax-mp 7 . 2  |-  U. U. ( A  X.  B
)  =  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )
4 ancom 262 . . . 4  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <-> 
( E. a  a  e.  A  /\  E. b  b  e.  B
) )
5 xpm 4765 . . . 4  |-  ( ( E. a  a  e.  A  /\  E. b 
b  e.  B )  <->  E. x  x  e.  ( A  X.  B
) )
64, 5bitri 182 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  <->  E. x  x  e.  ( A  X.  B
) )
7 dmxpm 4573 . . . 4  |-  ( E. b  b  e.  B  ->  dom  ( A  X.  B )  =  A )
8 rnxpm 4772 . . . 4  |-  ( E. a  a  e.  A  ->  ran  ( A  X.  B )  =  B )
9 uneq12 3121 . . . 4  |-  ( ( dom  ( A  X.  B )  =  A  /\  ran  ( A  X.  B )  =  B )  ->  ( dom  ( A  X.  B
)  u.  ran  ( A  X.  B ) )  =  ( A  u.  B ) )
107, 8, 9syl2an 283 . . 3  |-  ( ( E. b  b  e.  B  /\  E. a 
a  e.  A )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
116, 10sylbir 133 . 2  |-  ( E. x  x  e.  ( A  X.  B )  ->  ( dom  ( A  X.  B )  u. 
ran  ( A  X.  B ) )  =  ( A  u.  B
) )
123, 11syl5eq 2125 1  |-  ( E. x  x  e.  ( A  X.  B )  ->  U. U. ( A  X.  B )  =  ( A  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433    u. cun 2971   U.cuni 3601    X. cxp 4361   dom cdm 4363   ran crn 4364   Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator