ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffn5imf Unicode version

Theorem dffn5imf 5249
Description: Representation of a function in terms of its values. (Contributed by Jim Kingdon, 31-Dec-2018.)
Hypothesis
Ref Expression
dffn5imf.1  |-  F/_ x F
Assertion
Ref Expression
dffn5imf  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Distinct variable group:    x, A
Allowed substitution hint:    F( x)

Proof of Theorem dffn5imf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dffn5im 5240 . 2  |-  ( F  Fn  A  ->  F  =  ( z  e.  A  |->  ( F `  z ) ) )
2 dffn5imf.1 . . . 4  |-  F/_ x F
3 nfcv 2219 . . . 4  |-  F/_ x
z
42, 3nffv 5205 . . 3  |-  F/_ x
( F `  z
)
5 nfcv 2219 . . 3  |-  F/_ z
( F `  x
)
6 fveq2 5198 . . 3  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
74, 5, 6cbvmpt 3872 . 2  |-  ( z  e.  A  |->  ( F `
 z ) )  =  ( x  e.  A  |->  ( F `  x ) )
81, 7syl6eq 2129 1  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284   F/_wnfc 2206    |-> cmpt 3839    Fn wfn 4917   ` cfv 4922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator