| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvmpt | Unicode version | ||
| Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
| Ref | Expression |
|---|---|
| cbvmpt.1 |
|
| cbvmpt.2 |
|
| cbvmpt.3 |
|
| Ref | Expression |
|---|---|
| cbvmpt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1461 |
. . . 4
| |
| 2 | nfv 1461 |
. . . . 5
| |
| 3 | nfs1v 1856 |
. . . . 5
| |
| 4 | 2, 3 | nfan 1497 |
. . . 4
|
| 5 | eleq1 2141 |
. . . . 5
| |
| 6 | sbequ12 1694 |
. . . . 5
| |
| 7 | 5, 6 | anbi12d 456 |
. . . 4
|
| 8 | 1, 4, 7 | cbvopab1 3851 |
. . 3
|
| 9 | nfv 1461 |
. . . . 5
| |
| 10 | cbvmpt.1 |
. . . . . . 7
| |
| 11 | 10 | nfeq2 2230 |
. . . . . 6
|
| 12 | 11 | nfsb 1863 |
. . . . 5
|
| 13 | 9, 12 | nfan 1497 |
. . . 4
|
| 14 | nfv 1461 |
. . . 4
| |
| 15 | eleq1 2141 |
. . . . 5
| |
| 16 | sbequ 1761 |
. . . . . 6
| |
| 17 | cbvmpt.2 |
. . . . . . . 8
| |
| 18 | 17 | nfeq2 2230 |
. . . . . . 7
|
| 19 | cbvmpt.3 |
. . . . . . . 8
| |
| 20 | 19 | eqeq2d 2092 |
. . . . . . 7
|
| 21 | 18, 20 | sbie 1714 |
. . . . . 6
|
| 22 | 16, 21 | syl6bb 194 |
. . . . 5
|
| 23 | 15, 22 | anbi12d 456 |
. . . 4
|
| 24 | 13, 14, 23 | cbvopab1 3851 |
. . 3
|
| 25 | 8, 24 | eqtri 2101 |
. 2
|
| 26 | df-mpt 3841 |
. 2
| |
| 27 | df-mpt 3841 |
. 2
| |
| 28 | 25, 26, 27 | 3eqtr4i 2111 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-mpt 3841 |
| This theorem is referenced by: cbvmptv 3873 dffn5imf 5249 fvmpts 5271 fvmpt2 5275 mptfvex 5277 fmptcof 5352 fmptcos 5353 fliftfuns 5458 offval2 5746 qliftfuns 6213 |
| Copyright terms: Public domain | W3C validator |