ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun2 Unicode version

Theorem dffun2 4932
Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dffun2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun2
StepHypRef Expression
1 df-fun 4924 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
2 df-id 4048 . . . . . 6  |-  _I  =  { <. y ,  z
>.  |  y  =  z }
32sseq2i 3024 . . . . 5  |-  ( ( A  o.  `' A
)  C_  _I  <->  ( A  o.  `' A )  C_  { <. y ,  z >.  |  y  =  z } )
4 df-co 4372 . . . . . 6  |-  ( A  o.  `' A )  =  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) }
54sseq1i 3023 . . . . 5  |-  ( ( A  o.  `' A
)  C_  { <. y ,  z >.  |  y  =  z }  <->  { <. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z } )
6 ssopab2b 4031 . . . . 5  |-  ( {
<. y ,  z >.  |  E. x ( y `' A x  /\  x A z ) } 
C_  { <. y ,  z >.  |  y  =  z }  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
73, 5, 63bitri 204 . . . 4  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. y A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z ) )
8 vex 2604 . . . . . . . . . . . 12  |-  y  e. 
_V
9 vex 2604 . . . . . . . . . . . 12  |-  x  e. 
_V
108, 9brcnv 4536 . . . . . . . . . . 11  |-  ( y `' A x  <->  x A
y )
1110anbi1i 445 . . . . . . . . . 10  |-  ( ( y `' A x  /\  x A z )  <->  ( x A y  /\  x A z ) )
1211exbii 1536 . . . . . . . . 9  |-  ( E. x ( y `' A x  /\  x A z )  <->  E. x
( x A y  /\  x A z ) )
1312imbi1i 236 . . . . . . . 8  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
14 19.23v 1804 . . . . . . . 8  |-  ( A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <-> 
( E. x ( x A y  /\  x A z )  -> 
y  =  z ) )
1513, 14bitr4i 185 . . . . . . 7  |-  ( ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1615albii 1399 . . . . . 6  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z ) )
17 alcom 1407 . . . . . 6  |-  ( A. z A. x ( ( x A y  /\  x A z )  -> 
y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
1816, 17bitri 182 . . . . 5  |-  ( A. z ( E. x
( y `' A x  /\  x A z )  ->  y  =  z )  <->  A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
1918albii 1399 . . . 4  |-  ( A. y A. z ( E. x ( y `' A x  /\  x A z )  -> 
y  =  z )  <->  A. y A. x A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) )
20 alcom 1407 . . . 4  |-  ( A. y A. x A. z
( ( x A y  /\  x A z )  ->  y  =  z )  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
217, 19, 203bitri 204 . . 3  |-  ( ( A  o.  `' A
)  C_  _I  <->  A. x A. y A. z ( ( x A y  /\  x A z )  ->  y  =  z ) )
2221anbi2i 444 . 2  |-  ( ( Rel  A  /\  ( A  o.  `' A
)  C_  _I  )  <->  ( Rel  A  /\  A. x A. y A. z
( ( x A y  /\  x A z )  ->  y  =  z ) ) )
231, 22bitri 182 1  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( x A y  /\  x A z )  -> 
y  =  z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103   A.wal 1282   E.wex 1421    C_ wss 2973   class class class wbr 3785   {copab 3838    _I cid 4043   `'ccnv 4362    o. ccom 4367   Rel wrel 4368   Fun wfun 4916
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-id 4048  df-cnv 4371  df-co 4372  df-fun 4924
This theorem is referenced by:  dffun4  4933  dffun6f  4935  sbcfung  4945  funcnveq  4982  fliftfun  5456  fclim  10133
  Copyright terms: Public domain W3C validator