ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2b Unicode version

Theorem ssopab2b 4031
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
ssopab2b  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 3847 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
2 nfopab1 3847 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ps }
31, 2nfss 2992 . . 3  |-  F/ x { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
4 nfopab2 3848 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ph }
5 nfopab2 3848 . . . . 5  |-  F/_ y { <. x ,  y
>.  |  ps }
64, 5nfss 2992 . . . 4  |-  F/ y { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }
7 ssel 2993 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( <. x ,  y >.  e.  { <. x ,  y >.  |  ph }  ->  <. x ,  y >.  e.  { <. x ,  y >.  |  ps } ) )
8 opabid 4012 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
9 opabid 4012 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ps }  <->  ps )
107, 8, 93imtr3g 202 . . . 4  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  ( ph  ->  ps ) )
116, 10alrimi 1455 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. y ( ph  ->  ps ) )
123, 11alrimi 1455 . 2  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  ->  A. x A. y
( ph  ->  ps )
)
13 ssopab2 4030 . 2  |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } )
1412, 13impbii 124 1  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    e. wcel 1433    C_ wss 2973   <.cop 3401   {copab 3838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-opab 3840
This theorem is referenced by:  eqopab2b  4034  dffun2  4932
  Copyright terms: Public domain W3C validator