| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgcd3 | Unicode version | ||
| Description: Alternate definition of
the |
| Ref | Expression |
|---|---|
| dfgcd3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd0val 10352 |
. . 3
| |
| 2 | simprl 497 |
. . . 4
| |
| 3 | simprr 498 |
. . . 4
| |
| 4 | 2, 3 | oveq12d 5550 |
. . 3
|
| 5 | 0nn0 8303 |
. . . . 5
| |
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | 0dvds 10215 |
. . . . . . . . . . 11
| |
| 8 | 7 | ad2antrr 471 |
. . . . . . . . . 10
|
| 9 | 2, 8 | mpbird 165 |
. . . . . . . . 9
|
| 10 | 0dvds 10215 |
. . . . . . . . . . 11
| |
| 11 | 10 | ad2antlr 472 |
. . . . . . . . . 10
|
| 12 | 3, 11 | mpbird 165 |
. . . . . . . . 9
|
| 13 | 9, 12 | jca 300 |
. . . . . . . 8
|
| 14 | 13 | ad2antrr 471 |
. . . . . . 7
|
| 15 | 0z 8362 |
. . . . . . . . 9
| |
| 16 | breq1 3788 |
. . . . . . . . . . 11
| |
| 17 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 18 | breq1 3788 |
. . . . . . . . . . . 12
| |
| 19 | 17, 18 | anbi12d 456 |
. . . . . . . . . . 11
|
| 20 | 16, 19 | bibi12d 233 |
. . . . . . . . . 10
|
| 21 | 20 | rspcv 2697 |
. . . . . . . . 9
|
| 22 | 15, 21 | ax-mp 7 |
. . . . . . . 8
|
| 23 | 22 | adantl 271 |
. . . . . . 7
|
| 24 | 14, 23 | mpbird 165 |
. . . . . 6
|
| 25 | simplr 496 |
. . . . . . . 8
| |
| 26 | 25 | nn0zd 8467 |
. . . . . . 7
|
| 27 | 0dvds 10215 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 24, 28 | mpbid 145 |
. . . . 5
|
| 30 | dvds0 10210 |
. . . . . . . . 9
| |
| 31 | 30 | adantl 271 |
. . . . . . . 8
|
| 32 | breq2 3789 |
. . . . . . . . 9
| |
| 33 | 32 | ad2antlr 472 |
. . . . . . . 8
|
| 34 | 31, 33 | mpbird 165 |
. . . . . . 7
|
| 35 | 2 | ad3antrrr 475 |
. . . . . . . . 9
|
| 36 | 31, 35 | breqtrrd 3811 |
. . . . . . . 8
|
| 37 | 3 | ad3antrrr 475 |
. . . . . . . . 9
|
| 38 | 31, 37 | breqtrrd 3811 |
. . . . . . . 8
|
| 39 | 36, 38 | jca 300 |
. . . . . . 7
|
| 40 | 34, 39 | 2thd 173 |
. . . . . 6
|
| 41 | 40 | ralrimiva 2434 |
. . . . 5
|
| 42 | 29, 41 | impbida 560 |
. . . 4
|
| 43 | 6, 42 | riota5 5513 |
. . 3
|
| 44 | 1, 4, 43 | 3eqtr4a 2139 |
. 2
|
| 45 | bezoutlembi 10394 |
. . . . 5
| |
| 46 | simpl 107 |
. . . . . 6
| |
| 47 | 46 | reximi 2458 |
. . . . 5
|
| 48 | 45, 47 | syl 14 |
. . . 4
|
| 49 | 48 | adantr 270 |
. . 3
|
| 50 | simplll 499 |
. . . . 5
| |
| 51 | simpllr 500 |
. . . . 5
| |
| 52 | simprl 497 |
. . . . 5
| |
| 53 | breq1 3788 |
. . . . . . . . 9
| |
| 54 | breq1 3788 |
. . . . . . . . . 10
| |
| 55 | breq1 3788 |
. . . . . . . . . 10
| |
| 56 | 54, 55 | anbi12d 456 |
. . . . . . . . 9
|
| 57 | 53, 56 | bibi12d 233 |
. . . . . . . 8
|
| 58 | 57 | cbvralv 2577 |
. . . . . . 7
|
| 59 | 58 | biimpi 118 |
. . . . . 6
|
| 60 | 59 | ad2antll 474 |
. . . . 5
|
| 61 | simplr 496 |
. . . . 5
| |
| 62 | 50, 51, 52, 60, 61 | bezoutlemsup 10398 |
. . . 4
|
| 63 | breq1 3788 |
. . . . . . . . 9
| |
| 64 | 63, 56 | bibi12d 233 |
. . . . . . . 8
|
| 65 | 64 | cbvralv 2577 |
. . . . . . 7
|
| 66 | 65 | a1i 9 |
. . . . . 6
|
| 67 | 66 | riotabiia 5505 |
. . . . 5
|
| 68 | simprr 498 |
. . . . . 6
| |
| 69 | 50, 51, 52, 68 | bezoutlemeu 10396 |
. . . . . . 7
|
| 70 | breq2 3789 |
. . . . . . . . . 10
| |
| 71 | 70 | bibi1d 231 |
. . . . . . . . 9
|
| 72 | 71 | ralbidv 2368 |
. . . . . . . 8
|
| 73 | 72 | riota2 5510 |
. . . . . . 7
|
| 74 | 52, 69, 73 | syl2anc 403 |
. . . . . 6
|
| 75 | 68, 74 | mpbid 145 |
. . . . 5
|
| 76 | 67, 75 | syl5eqr 2127 |
. . . 4
|
| 77 | gcdn0val 10353 |
. . . . 5
| |
| 78 | 77 | adantr 270 |
. . . 4
|
| 79 | 62, 76, 78 | 3eqtr4rd 2124 |
. . 3
|
| 80 | 49, 79 | rexlimddv 2481 |
. 2
|
| 81 | gcdmndc 10340 |
. . 3
| |
| 82 | exmiddc 777 |
. . 3
| |
| 83 | 81, 82 | syl 14 |
. 2
|
| 84 | 44, 80, 83 | mpjaodan 744 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 ax-arch 7095 ax-caucvg 7096 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-sup 6397 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-rp 8735 df-fz 9030 df-fzo 9153 df-fl 9274 df-mod 9325 df-iseq 9432 df-iexp 9476 df-cj 9729 df-re 9730 df-im 9731 df-rsqrt 9884 df-abs 9885 df-dvds 10196 df-gcd 10339 |
| This theorem is referenced by: bezout 10400 |
| Copyright terms: Public domain | W3C validator |