ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iso Unicode version

Definition df-iso 4052
Description: Define the strict linear order predicate. The expression  R  Or  A is true if relationship  R orders  A. The property  x R y  ->  ( x R z  \/  z R y ) is called weak linearity by Proposition 11.2.3 of [HoTT], p. (varies). If we assumed excluded middle, it would be equivalent to trichotomy, 
x R y  \/  x  =  y  \/  y R x. (Contributed by NM, 21-Jan-1996.) (Revised by Jim Kingdon, 4-Oct-2018.)
Assertion
Ref Expression
df-iso  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Distinct variable groups:    x, y, z, R    x, A, y, z

Detailed syntax breakdown of Definition df-iso
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wor 4050 . 2  wff  R  Or  A
41, 2wpo 4049 . . 3  wff  R  Po  A
5 vx . . . . . . . . 9  setvar  x
65cv 1283 . . . . . . . 8  class  x
7 vy . . . . . . . . 9  setvar  y
87cv 1283 . . . . . . . 8  class  y
96, 8, 2wbr 3785 . . . . . . 7  wff  x R y
10 vz . . . . . . . . . 10  setvar  z
1110cv 1283 . . . . . . . . 9  class  z
126, 11, 2wbr 3785 . . . . . . . 8  wff  x R z
1311, 8, 2wbr 3785 . . . . . . . 8  wff  z R y
1412, 13wo 661 . . . . . . 7  wff  ( x R z  \/  z R y )
159, 14wi 4 . . . . . 6  wff  ( x R y  ->  (
x R z  \/  z R y ) )
1615, 10, 1wral 2348 . . . . 5  wff  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1716, 7, 1wral 2348 . . . 4  wff  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
1817, 5, 1wral 2348 . . 3  wff  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) )
194, 18wa 102 . 2  wff  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )
203, 19wb 103 1  wff  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
Colors of variables: wff set class
This definition is referenced by:  nfso  4057  sopo  4068  soss  4069  soeq1  4070  issod  4074  sowlin  4075  so0  4081  ordsoexmid  4305  soinxp  4428  sosng  4431  cnvsom  4881  isosolem  5483  ltsopr  6786  ltsosr  6941  ltso  7189  xrltso  8871
  Copyright terms: Public domain W3C validator