ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopab2 Unicode version

Theorem dfopab2 5835
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Distinct variable groups:    ph, z    x, y, z
Allowed substitution hints:    ph( x, y)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 2833 . . . . 5  |-  F/ x [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
2119.41 1616 . . . 4  |-  ( E. x ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
3 sbcopeq1a 5833 . . . . . . . 8  |-  ( z  =  <. x ,  y
>.  ->  ( [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph  <->  ph ) )
43pm5.32i 441 . . . . . . 7  |-  ( ( z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( z  =  <. x ,  y
>.  /\  ph ) )
54exbii 1536 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  E. y ( z  =  <. x ,  y
>.  /\  ph ) )
6 nfcv 2219 . . . . . . . 8  |-  F/_ y
( 1st `  z
)
7 nfsbc1v 2833 . . . . . . . 8  |-  F/ y
[. ( 2nd `  z
)  /  y ]. ph
86, 7nfsbc 2835 . . . . . . 7  |-  F/ y
[. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph
9819.41 1616 . . . . . 6  |-  ( E. y ( z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph )  <->  ( E. y 
z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
105, 9bitr3i 184 . . . . 5  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
1110exbii 1536 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  z  =  <. x ,  y >.  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) )
12 elvv 4420 . . . . 5  |-  ( z  e.  ( _V  X.  _V )  <->  E. x E. y 
z  =  <. x ,  y >. )
1312anbi1i 445 . . . 4  |-  ( ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph )  <->  ( E. x E. y  z  = 
<. x ,  y >.  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
142, 11, 133bitr4i 210 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph ) 
<->  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z
)  /  x ]. [. ( 2nd `  z
)  /  y ]. ph ) )
1514abbii 2194 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  =  { z  |  ( z  e.  ( _V 
X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
16 df-opab 3840 . 2  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
17 df-rab 2357 . 2  |-  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph }  =  {
z  |  ( z  e.  ( _V  X.  _V )  /\  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z )  /  y ]. ph ) }
1815, 16, 173eqtr4i 2111 1  |-  { <. x ,  y >.  |  ph }  =  { z  e.  ( _V  X.  _V )  |  [. ( 1st `  z )  /  x ]. [. ( 2nd `  z
)  /  y ]. ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   {crab 2352   _Vcvv 2601   [.wsbc 2815   <.cop 3401   {copab 3838    X. cxp 4361   ` cfv 4922   1stc1st 5785   2ndc2nd 5786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fv 4930  df-1st 5787  df-2nd 5788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator