| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfoprab3.1 |
|
| Ref | Expression |
|---|---|
| dfoprab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3s 5836 |
. 2
| |
| 2 | vex 2604 |
. . . . . 6
| |
| 3 | 1stexg 5814 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 7 |
. . . . 5
|
| 5 | 2ndexg 5815 |
. . . . . 6
| |
| 6 | 2, 5 | ax-mp 7 |
. . . . 5
|
| 7 | eqcom 2083 |
. . . . . . . . . 10
| |
| 8 | eqcom 2083 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | anbi12i 447 |
. . . . . . . . 9
|
| 10 | eqopi 5818 |
. . . . . . . . 9
| |
| 11 | 9, 10 | sylan2b 281 |
. . . . . . . 8
|
| 12 | dfoprab3.1 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | bicomd 139 |
. . . . . 6
|
| 15 | 14 | ex 113 |
. . . . 5
|
| 16 | 4, 6, 15 | sbc2iedv 2886 |
. . . 4
|
| 17 | 16 | pm5.32i 441 |
. . 3
|
| 18 | 17 | opabbii 3845 |
. 2
|
| 19 | 1, 18 | eqtr2i 2102 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fo 4928 df-fv 4930 df-oprab 5536 df-1st 5787 df-2nd 5788 |
| This theorem is referenced by: dfoprab4 5838 df1st2 5860 df2nd2 5861 |
| Copyright terms: Public domain | W3C validator |