| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsmo2 | Unicode version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 4-Mar-2013.) |
| Ref | Expression |
|---|---|
| dfsmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-smo 5924 |
. 2
| |
| 2 | ralcom 2517 |
. . . . . 6
| |
| 3 | impexp 259 |
. . . . . . . . 9
| |
| 4 | simpr 108 |
. . . . . . . . . . 11
| |
| 5 | ordtr1 4143 |
. . . . . . . . . . . . . . 15
| |
| 6 | 5 | 3impib 1136 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | 3com23 1144 |
. . . . . . . . . . . . 13
|
| 8 | simp3 940 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | jca 300 |
. . . . . . . . . . . 12
|
| 10 | 9 | 3expia 1140 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | impbid2 141 |
. . . . . . . . . 10
|
| 12 | 11 | imbi1d 229 |
. . . . . . . . 9
|
| 13 | 3, 12 | syl5bbr 192 |
. . . . . . . 8
|
| 14 | 13 | ralbidv2 2370 |
. . . . . . 7
|
| 15 | 14 | ralbidva 2364 |
. . . . . 6
|
| 16 | 2, 15 | syl5bb 190 |
. . . . 5
|
| 17 | 16 | pm5.32i 441 |
. . . 4
|
| 18 | 17 | anbi2i 444 |
. . 3
|
| 19 | 3anass 923 |
. . 3
| |
| 20 | 3anass 923 |
. . 3
| |
| 21 | 18, 19, 20 | 3bitr4i 210 |
. 2
|
| 22 | 1, 21 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-smo 5924 |
| This theorem is referenced by: issmo2 5927 smores2 5932 smofvon2dm 5934 |
| Copyright terms: Public domain | W3C validator |