ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issmo Unicode version

Theorem issmo 5926
Description: Conditions for which  A is a strictly monotone ordinal function. (Contributed by Andrew Salmon, 15-Nov-2011.)
Hypotheses
Ref Expression
issmo.1  |-  A : B
--> On
issmo.2  |-  Ord  B
issmo.3  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
issmo.4  |-  dom  A  =  B
Assertion
Ref Expression
issmo  |-  Smo  A
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem issmo
StepHypRef Expression
1 issmo.1 . . 3  |-  A : B
--> On
2 issmo.4 . . . 4  |-  dom  A  =  B
32feq2i 5060 . . 3  |-  ( A : dom  A --> On  <->  A : B
--> On )
41, 3mpbir 144 . 2  |-  A : dom  A --> On
5 issmo.2 . . 3  |-  Ord  B
6 ordeq 4127 . . . 4  |-  ( dom 
A  =  B  -> 
( Ord  dom  A  <->  Ord  B ) )
72, 6ax-mp 7 . . 3  |-  ( Ord 
dom  A  <->  Ord  B )
85, 7mpbir 144 . 2  |-  Ord  dom  A
92eleq2i 2145 . . . 4  |-  ( x  e.  dom  A  <->  x  e.  B )
102eleq2i 2145 . . . 4  |-  ( y  e.  dom  A  <->  y  e.  B )
11 issmo.3 . . . 4  |-  ( ( x  e.  B  /\  y  e.  B )  ->  ( x  e.  y  ->  ( A `  x )  e.  ( A `  y ) ) )
129, 10, 11syl2anb 285 . . 3  |-  ( ( x  e.  dom  A  /\  y  e.  dom  A )  ->  ( x  e.  y  ->  ( A `
 x )  e.  ( A `  y
) ) )
1312rgen2a 2417 . 2  |-  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) )
14 df-smo 5924 . 2  |-  ( Smo 
A  <->  ( A : dom  A --> On  /\  Ord  dom 
A  /\  A. x  e.  dom  A A. y  e.  dom  A ( x  e.  y  ->  ( A `  x )  e.  ( A `  y
) ) ) )
154, 8, 13, 14mpbir3an 1120 1  |-  Smo  A
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   Ord word 4117   Oncon0 4118   dom cdm 4363   -->wf 4918   ` cfv 4922   Smo wsmo 5923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-in 2979  df-ss 2986  df-uni 3602  df-tr 3876  df-iord 4121  df-fn 4925  df-f 4926  df-smo 5924
This theorem is referenced by:  iordsmo  5935
  Copyright terms: Public domain W3C validator