| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > smores2 | Unicode version | ||
| Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| Ref | Expression |
|---|---|
| smores2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsmo2 5925 |
. . . . . . 7
| |
| 2 | 1 | simp1bi 953 |
. . . . . 6
|
| 3 | ffun 5068 |
. . . . . 6
| |
| 4 | 2, 3 | syl 14 |
. . . . 5
|
| 5 | funres 4961 |
. . . . . 6
| |
| 6 | funfn 4951 |
. . . . . 6
| |
| 7 | 5, 6 | sylib 120 |
. . . . 5
|
| 8 | 4, 7 | syl 14 |
. . . 4
|
| 9 | df-ima 4376 |
. . . . . 6
| |
| 10 | imassrn 4699 |
. . . . . 6
| |
| 11 | 9, 10 | eqsstr3i 3030 |
. . . . 5
|
| 12 | frn 5072 |
. . . . . 6
| |
| 13 | 2, 12 | syl 14 |
. . . . 5
|
| 14 | 11, 13 | syl5ss 3010 |
. . . 4
|
| 15 | df-f 4926 |
. . . 4
| |
| 16 | 8, 14, 15 | sylanbrc 408 |
. . 3
|
| 17 | 16 | adantr 270 |
. 2
|
| 18 | smodm 5929 |
. . 3
| |
| 19 | ordin 4140 |
. . . . 5
| |
| 20 | dmres 4650 |
. . . . . 6
| |
| 21 | ordeq 4127 |
. . . . . 6
| |
| 22 | 20, 21 | ax-mp 7 |
. . . . 5
|
| 23 | 19, 22 | sylibr 132 |
. . . 4
|
| 24 | 23 | ancoms 264 |
. . 3
|
| 25 | 18, 24 | sylan 277 |
. 2
|
| 26 | resss 4653 |
. . . . . 6
| |
| 27 | dmss 4552 |
. . . . . 6
| |
| 28 | 26, 27 | ax-mp 7 |
. . . . 5
|
| 29 | 1 | simp3bi 955 |
. . . . 5
|
| 30 | ssralv 3058 |
. . . . 5
| |
| 31 | 28, 29, 30 | mpsyl 64 |
. . . 4
|
| 32 | 31 | adantr 270 |
. . 3
|
| 33 | ordtr1 4143 |
. . . . . . . . . . 11
| |
| 34 | 25, 33 | syl 14 |
. . . . . . . . . 10
|
| 35 | inss1 3186 |
. . . . . . . . . . . 12
| |
| 36 | 20, 35 | eqsstri 3029 |
. . . . . . . . . . 11
|
| 37 | 36 | sseli 2995 |
. . . . . . . . . 10
|
| 38 | 34, 37 | syl6 33 |
. . . . . . . . 9
|
| 39 | 38 | expcomd 1370 |
. . . . . . . 8
|
| 40 | 39 | imp31 252 |
. . . . . . 7
|
| 41 | fvres 5219 |
. . . . . . 7
| |
| 42 | 40, 41 | syl 14 |
. . . . . 6
|
| 43 | 36 | sseli 2995 |
. . . . . . . 8
|
| 44 | fvres 5219 |
. . . . . . . 8
| |
| 45 | 43, 44 | syl 14 |
. . . . . . 7
|
| 46 | 45 | ad2antlr 472 |
. . . . . 6
|
| 47 | 42, 46 | eleq12d 2149 |
. . . . 5
|
| 48 | 47 | ralbidva 2364 |
. . . 4
|
| 49 | 48 | ralbidva 2364 |
. . 3
|
| 50 | 32, 49 | mpbird 165 |
. 2
|
| 51 | dfsmo2 5925 |
. 2
| |
| 52 | 17, 25, 50, 51 | syl3anbrc 1122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-tr 3876 df-iord 4121 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-smo 5924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |