| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issmo2 | Unicode version | ||
| Description: Alternate definition of a strictly monotone ordinal function. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| issmo2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fss 5074 |
. . . . 5
| |
| 2 | 1 | ex 113 |
. . . 4
|
| 3 | fdm 5070 |
. . . . 5
| |
| 4 | 3 | feq2d 5055 |
. . . 4
|
| 5 | 2, 4 | sylibrd 167 |
. . 3
|
| 6 | ordeq 4127 |
. . . . 5
| |
| 7 | 3, 6 | syl 14 |
. . . 4
|
| 8 | 7 | biimprd 156 |
. . 3
|
| 9 | 3 | raleqdv 2555 |
. . . 4
|
| 10 | 9 | biimprd 156 |
. . 3
|
| 11 | 5, 8, 10 | 3anim123d 1250 |
. 2
|
| 12 | dfsmo2 5925 |
. 2
| |
| 13 | 11, 12 | syl6ibr 160 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-in 2979 df-ss 2986 df-uni 3602 df-tr 3876 df-iord 4121 df-fn 4925 df-f 4926 df-smo 5924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |