ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn2 Unicode version

Theorem difprsn2 3526
Description: Removal of a singleton from an unordered pair. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
difprsn2  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)

Proof of Theorem difprsn2
StepHypRef Expression
1 prcom 3468 . . 3  |-  { A ,  B }  =  { B ,  A }
21difeq1i 3086 . 2  |-  ( { A ,  B }  \  { B } )  =  ( { B ,  A }  \  { B } )
3 necom 2329 . . 3  |-  ( A  =/=  B  <->  B  =/=  A )
4 difprsn1 3525 . . 3  |-  ( B  =/=  A  ->  ( { B ,  A }  \  { B } )  =  { A }
)
53, 4sylbi 119 . 2  |-  ( A  =/=  B  ->  ( { B ,  A }  \  { B } )  =  { A }
)
62, 5syl5eq 2125 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { B } )  =  { A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    =/= wne 2245    \ cdif 2970   {csn 3398   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator