ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difprsn1 Unicode version

Theorem difprsn1 3525
Description: Removal of a singleton from an unordered pair. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Assertion
Ref Expression
difprsn1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)

Proof of Theorem difprsn1
StepHypRef Expression
1 necom 2329 . 2  |-  ( B  =/=  A  <->  A  =/=  B )
2 disjsn2 3455 . . . 4  |-  ( B  =/=  A  ->  ( { B }  i^i  { A } )  =  (/) )
3 disj3 3296 . . . 4  |-  ( ( { B }  i^i  { A } )  =  (/) 
<->  { B }  =  ( { B }  \  { A } ) )
42, 3sylib 120 . . 3  |-  ( B  =/=  A  ->  { B }  =  ( { B }  \  { A } ) )
5 df-pr 3405 . . . . . 6  |-  { A ,  B }  =  ( { A }  u.  { B } )
65equncomi 3118 . . . . 5  |-  { A ,  B }  =  ( { B }  u.  { A } )
76difeq1i 3086 . . . 4  |-  ( { A ,  B }  \  { A } )  =  ( ( { B }  u.  { A } )  \  { A } )
8 difun2 3322 . . . 4  |-  ( ( { B }  u.  { A } )  \  { A } )  =  ( { B }  \  { A } )
97, 8eqtri 2101 . . 3  |-  ( { A ,  B }  \  { A } )  =  ( { B }  \  { A }
)
104, 9syl6reqr 2132 . 2  |-  ( B  =/=  A  ->  ( { A ,  B }  \  { A } )  =  { B }
)
111, 10sylbir 133 1  |-  ( A  =/=  B  ->  ( { A ,  B }  \  { A } )  =  { B }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    =/= wne 2245    \ cdif 2970    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405
This theorem is referenced by:  difprsn2  3526
  Copyright terms: Public domain W3C validator