ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  diftpsn3 Unicode version

Theorem diftpsn3 3527
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.)
Assertion
Ref Expression
diftpsn3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )

Proof of Theorem diftpsn3
StepHypRef Expression
1 df-tp 3406 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
21a1i 9 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } ) )
32difeq1d 3089 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  ( ( { A ,  B }  u.  { C } ) 
\  { C }
) )
4 difundir 3217 . . 3  |-  ( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )
54a1i 9 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  u.  { C } )  \  { C } )  =  ( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) ) )
6 df-pr 3405 . . . . . . . . 9  |-  { A ,  B }  =  ( { A }  u.  { B } )
76a1i 9 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A }  u.  { B } ) )
87ineq1d 3166 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  ( ( { A }  u.  { B } )  i^i  { C }
) )
9 incom 3158 . . . . . . . . 9  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( { C }  i^i  ( { A }  u.  { B } ) )
10 indi 3211 . . . . . . . . 9  |-  ( { C }  i^i  ( { A }  u.  { B } ) )  =  ( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )
119, 10eqtri 2101 . . . . . . . 8  |-  ( ( { A }  u.  { B } )  i^i 
{ C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B } ) )
1211a1i 9 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  ( ( { C }  i^i  { A } )  u.  ( { C }  i^i  { B }
) ) )
13 necom 2329 . . . . . . . . . . 11  |-  ( A  =/=  C  <->  C  =/=  A )
14 disjsn2 3455 . . . . . . . . . . 11  |-  ( C  =/=  A  ->  ( { C }  i^i  { A } )  =  (/) )
1513, 14sylbi 119 . . . . . . . . . 10  |-  ( A  =/=  C  ->  ( { C }  i^i  { A } )  =  (/) )
1615adantr 270 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { A } )  =  (/) )
17 necom 2329 . . . . . . . . . . 11  |-  ( B  =/=  C  <->  C  =/=  B )
18 disjsn2 3455 . . . . . . . . . . 11  |-  ( C  =/=  B  ->  ( { C }  i^i  { B } )  =  (/) )
1917, 18sylbi 119 . . . . . . . . . 10  |-  ( B  =/=  C  ->  ( { C }  i^i  { B } )  =  (/) )
2019adantl 271 . . . . . . . . 9  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  i^i  { B } )  =  (/) )
2116, 20uneq12d 3127 . . . . . . . 8  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  ( (/)  u.  (/) ) )
22 unidm 3115 . . . . . . . 8  |-  ( (/)  u.  (/) )  =  (/)
2321, 22syl6eq 2129 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { C }  i^i  { A }
)  u.  ( { C }  i^i  { B } ) )  =  (/) )
248, 12, 233eqtrd 2117 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  i^i  { C } )  =  (/) )
25 disj3 3296 . . . . . 6  |-  ( ( { A ,  B }  i^i  { C }
)  =  (/)  <->  { A ,  B }  =  ( { A ,  B }  \  { C }
) )
2624, 25sylib 120 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  ->  { A ,  B }  =  ( { A ,  B }  \  { C } ) )
2726eqcomd 2086 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B }  \  { C } )  =  { A ,  B }
)
28 difid 3312 . . . . 5  |-  ( { C }  \  { C } )  =  (/)
2928a1i 9 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { C }  \  { C } )  =  (/) )
3027, 29uneq12d 3127 . . 3  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  ( { A ,  B }  u.  (/) ) )
31 un0 3278 . . 3  |-  ( { A ,  B }  u.  (/) )  =  { A ,  B }
3230, 31syl6eq 2129 . 2  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A ,  B }  \  { C } )  u.  ( { C }  \  { C } ) )  =  { A ,  B } )
333, 5, 323eqtrd 2117 1  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( { A ,  B ,  C }  \  { C } )  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    =/= wne 2245    \ cdif 2970    u. cun 2971    i^i cin 2972   (/)c0 3251   {csn 3398   {cpr 3399   {ctp 3400
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-pr 3405  df-tp 3406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator