| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > diftpsn3 | Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3406 |
. . . 4
| |
| 2 | 1 | a1i 9 |
. . 3
|
| 3 | 2 | difeq1d 3089 |
. 2
|
| 4 | difundir 3217 |
. . 3
| |
| 5 | 4 | a1i 9 |
. 2
|
| 6 | df-pr 3405 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 9 |
. . . . . . . 8
|
| 8 | 7 | ineq1d 3166 |
. . . . . . 7
|
| 9 | incom 3158 |
. . . . . . . . 9
| |
| 10 | indi 3211 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2101 |
. . . . . . . 8
|
| 12 | 11 | a1i 9 |
. . . . . . 7
|
| 13 | necom 2329 |
. . . . . . . . . . 11
| |
| 14 | disjsn2 3455 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | sylbi 119 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 270 |
. . . . . . . . 9
|
| 17 | necom 2329 |
. . . . . . . . . . 11
| |
| 18 | disjsn2 3455 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sylbi 119 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 271 |
. . . . . . . . 9
|
| 21 | 16, 20 | uneq12d 3127 |
. . . . . . . 8
|
| 22 | unidm 3115 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl6eq 2129 |
. . . . . . 7
|
| 24 | 8, 12, 23 | 3eqtrd 2117 |
. . . . . 6
|
| 25 | disj3 3296 |
. . . . . 6
| |
| 26 | 24, 25 | sylib 120 |
. . . . 5
|
| 27 | 26 | eqcomd 2086 |
. . . 4
|
| 28 | difid 3312 |
. . . . 5
| |
| 29 | 28 | a1i 9 |
. . . 4
|
| 30 | 27, 29 | uneq12d 3127 |
. . 3
|
| 31 | un0 3278 |
. . 3
| |
| 32 | 30, 31 | syl6eq 2129 |
. 2
|
| 33 | 3, 5, 32 | 3eqtrd 2117 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-sn 3404 df-pr 3405 df-tp 3406 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |