ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpqlem Unicode version

Theorem dmaddpqlem 6567
Description: Decomposition of a positive fraction into numerator and denominator. Lemma for dmaddpq 6569. (Contributed by Jim Kingdon, 15-Sep-2019.)
Assertion
Ref Expression
dmaddpqlem  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Distinct variable group:    w, v, x

Proof of Theorem dmaddpqlem
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 elqsi 6181 . . 3  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. a  e.  ( N.  X.  N. )
x  =  [ a ]  ~Q  )
2 elxpi 4379 . . . . . . . 8  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v ( a  = 
<. w ,  v >.  /\  ( w  e.  N.  /\  v  e.  N. )
) )
3 simpl 107 . . . . . . . . 9  |-  ( ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  a  =  <. w ,  v >.
)
432eximi 1532 . . . . . . . 8  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  (
w  e.  N.  /\  v  e.  N. )
)  ->  E. w E. v  a  =  <. w ,  v >.
)
52, 4syl 14 . . . . . . 7  |-  ( a  e.  ( N.  X.  N. )  ->  E. w E. v  a  =  <. w ,  v >.
)
65anim1i 333 . . . . . 6  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [
a ]  ~Q  )
)
7 19.41vv 1824 . . . . . 6  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) 
<->  ( E. w E. v  a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
86, 7sylibr 132 . . . . 5  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v
( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  ) )
9 simpr 108 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [
a ]  ~Q  )
10 eceq1 6164 . . . . . . . 8  |-  ( a  =  <. w ,  v
>.  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
1110adantr 270 . . . . . . 7  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  [ a ]  ~Q  =  [ <. w ,  v >. ]  ~Q  )
129, 11eqtrd 2113 . . . . . 6  |-  ( ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  x  =  [ <. w ,  v >. ]  ~Q  )
13122eximi 1532 . . . . 5  |-  ( E. w E. v ( a  =  <. w ,  v >.  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
148, 13syl 14 . . . 4  |-  ( ( a  e.  ( N. 
X.  N. )  /\  x  =  [ a ]  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
1514rexlimiva 2472 . . 3  |-  ( E. a  e.  ( N. 
X.  N. ) x  =  [ a ]  ~Q  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
161, 15syl 14 . 2  |-  ( x  e.  ( ( N. 
X.  N. ) /.  ~Q  )  ->  E. w E. v  x  =  [ <. w ,  v >. ]  ~Q  )
17 df-nqqs 6538 . 2  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
1816, 17eleq2s 2173 1  |-  ( x  e.  Q.  ->  E. w E. v  x  =  [ <. w ,  v
>. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   <.cop 3401    X. cxp 4361   [cec 6127   /.cqs 6128   N.cnpi 6462    ~Q ceq 6469   Q.cnq 6470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-ec 6131  df-qs 6135  df-nqqs 6538
This theorem is referenced by:  dmaddpq  6569  dmmulpq  6570
  Copyright terms: Public domain W3C validator