| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmrnssfld | Unicode version | ||
| Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008.) |
| Ref | Expression |
|---|---|
| dmrnssfld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2604 |
. . . . 5
| |
| 2 | 1 | eldm2 4551 |
. . . 4
|
| 3 | 1 | prid1 3498 |
. . . . . 6
|
| 4 | vex 2604 |
. . . . . . . . . 10
| |
| 5 | 1, 4 | uniop 4010 |
. . . . . . . . 9
|
| 6 | 1, 4 | uniopel 4011 |
. . . . . . . . 9
|
| 7 | 5, 6 | syl5eqelr 2166 |
. . . . . . . 8
|
| 8 | elssuni 3629 |
. . . . . . . 8
| |
| 9 | 7, 8 | syl 14 |
. . . . . . 7
|
| 10 | 9 | sseld 2998 |
. . . . . 6
|
| 11 | 3, 10 | mpi 15 |
. . . . 5
|
| 12 | 11 | exlimiv 1529 |
. . . 4
|
| 13 | 2, 12 | sylbi 119 |
. . 3
|
| 14 | 13 | ssriv 3003 |
. 2
|
| 15 | 4 | elrn2 4594 |
. . . 4
|
| 16 | 4 | prid2 3499 |
. . . . . 6
|
| 17 | 9 | sseld 2998 |
. . . . . 6
|
| 18 | 16, 17 | mpi 15 |
. . . . 5
|
| 19 | 18 | exlimiv 1529 |
. . . 4
|
| 20 | 15, 19 | sylbi 119 |
. . 3
|
| 21 | 20 | ssriv 3003 |
. 2
|
| 22 | 14, 21 | unssi 3147 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: dmexg 4614 rnexg 4615 relfld 4866 relcoi2 4868 |
| Copyright terms: Public domain | W3C validator |