![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq1a | Unicode version |
Description: A transitive-type law relating membership and equality. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
eleq1a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2141 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprcd 158 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 |
This theorem is referenced by: elex22 2614 elex2 2615 reu6 2781 disjne 3297 ssimaex 5255 fnex 5404 f1ocnv2d 5724 tfrlem8 5957 eroprf 6222 ac6sfi 6379 recclnq 6582 prnmaddl 6680 renegcl 7369 nn0ind-raph 8464 iccid 8948 bj-nn0suc 10759 bj-inf2vnlem2 10766 bj-nn0sucALT 10773 |
Copyright terms: Public domain | W3C validator |