| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ind-raph | Unicode version | ||
| Description: Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| nn0ind-raph.1 |
|
| nn0ind-raph.2 |
|
| nn0ind-raph.3 |
|
| nn0ind-raph.4 |
|
| nn0ind-raph.5 |
|
| nn0ind-raph.6 |
|
| Ref | Expression |
|---|---|
| nn0ind-raph |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 8290 |
. 2
| |
| 2 | dfsbcq2 2818 |
. . . 4
| |
| 3 | nfv 1461 |
. . . . 5
| |
| 4 | nn0ind-raph.2 |
. . . . 5
| |
| 5 | 3, 4 | sbhypf 2648 |
. . . 4
|
| 6 | nfv 1461 |
. . . . 5
| |
| 7 | nn0ind-raph.3 |
. . . . 5
| |
| 8 | 6, 7 | sbhypf 2648 |
. . . 4
|
| 9 | nfv 1461 |
. . . . 5
| |
| 10 | nn0ind-raph.4 |
. . . . 5
| |
| 11 | 9, 10 | sbhypf 2648 |
. . . 4
|
| 12 | nfsbc1v 2833 |
. . . . 5
| |
| 13 | 1ex 7114 |
. . . . 5
| |
| 14 | c0ex 7113 |
. . . . . . 7
| |
| 15 | 0nn0 8303 |
. . . . . . . . . . . 12
| |
| 16 | eleq1a 2150 |
. . . . . . . . . . . 12
| |
| 17 | 15, 16 | ax-mp 7 |
. . . . . . . . . . 11
|
| 18 | nn0ind-raph.5 |
. . . . . . . . . . . . . . 15
| |
| 19 | nn0ind-raph.1 |
. . . . . . . . . . . . . . 15
| |
| 20 | 18, 19 | mpbiri 166 |
. . . . . . . . . . . . . 14
|
| 21 | eqeq2 2090 |
. . . . . . . . . . . . . . . 16
| |
| 22 | 21, 4 | syl6bir 162 |
. . . . . . . . . . . . . . 15
|
| 23 | 22 | pm5.74d 180 |
. . . . . . . . . . . . . 14
|
| 24 | 20, 23 | mpbii 146 |
. . . . . . . . . . . . 13
|
| 25 | 24 | com12 30 |
. . . . . . . . . . . 12
|
| 26 | 14, 25 | vtocle 2672 |
. . . . . . . . . . 11
|
| 27 | nn0ind-raph.6 |
. . . . . . . . . . 11
| |
| 28 | 17, 26, 27 | sylc 61 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 270 |
. . . . . . . . 9
|
| 30 | oveq1 5539 |
. . . . . . . . . . . . 13
| |
| 31 | 0p1e1 8153 |
. . . . . . . . . . . . 13
| |
| 32 | 30, 31 | syl6eq 2129 |
. . . . . . . . . . . 12
|
| 33 | 32 | eqeq2d 2092 |
. . . . . . . . . . 11
|
| 34 | 33, 7 | syl6bir 162 |
. . . . . . . . . 10
|
| 35 | 34 | imp 122 |
. . . . . . . . 9
|
| 36 | 29, 35 | mpbird 165 |
. . . . . . . 8
|
| 37 | 36 | ex 113 |
. . . . . . 7
|
| 38 | 14, 37 | vtocle 2672 |
. . . . . 6
|
| 39 | sbceq1a 2824 |
. . . . . 6
| |
| 40 | 38, 39 | mpbid 145 |
. . . . 5
|
| 41 | 12, 13, 40 | vtoclef 2671 |
. . . 4
|
| 42 | nnnn0 8295 |
. . . . 5
| |
| 43 | 42, 27 | syl 14 |
. . . 4
|
| 44 | 2, 5, 8, 11, 41, 43 | nnind 8055 |
. . 3
|
| 45 | nfv 1461 |
. . . . 5
| |
| 46 | eqeq1 2087 |
. . . . . 6
| |
| 47 | 19 | bicomd 139 |
. . . . . . . . 9
|
| 48 | 47, 10 | sylan9bb 449 |
. . . . . . . 8
|
| 49 | 18, 48 | mpbii 146 |
. . . . . . 7
|
| 50 | 49 | ex 113 |
. . . . . 6
|
| 51 | 46, 50 | sylbird 168 |
. . . . 5
|
| 52 | 45, 14, 51 | vtoclef 2671 |
. . . 4
|
| 53 | 52 | eqcoms 2084 |
. . 3
|
| 54 | 44, 53 | jaoi 668 |
. 2
|
| 55 | 1, 54 | sylbi 119 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-i2m1 7081 ax-0id 7084 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-sbc 2816 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-iota 4887 df-fv 4930 df-ov 5535 df-inn 8040 df-n0 8289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |