| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem8 | Unicode version | ||
| Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| tfrlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 |
. . . . . . . . 9
| |
| 2 | 1 | tfrlem3 5949 |
. . . . . . . 8
|
| 3 | 2 | abeq2i 2189 |
. . . . . . 7
|
| 4 | fndm 5018 |
. . . . . . . . . . 11
| |
| 5 | 4 | adantr 270 |
. . . . . . . . . 10
|
| 6 | 5 | eleq1d 2147 |
. . . . . . . . 9
|
| 7 | 6 | biimprcd 158 |
. . . . . . . 8
|
| 8 | 7 | rexlimiv 2471 |
. . . . . . 7
|
| 9 | 3, 8 | sylbi 119 |
. . . . . 6
|
| 10 | eleq1a 2150 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | rexlimiv 2471 |
. . . 4
|
| 13 | 12 | abssi 3069 |
. . 3
|
| 14 | ssorduni 4231 |
. . 3
| |
| 15 | 13, 14 | ax-mp 7 |
. 2
|
| 16 | 1 | recsfval 5954 |
. . . . 5
|
| 17 | 16 | dmeqi 4554 |
. . . 4
|
| 18 | dmuni 4563 |
. . . 4
| |
| 19 | vex 2604 |
. . . . . 6
| |
| 20 | 19 | dmex 4616 |
. . . . 5
|
| 21 | 20 | dfiun2 3712 |
. . . 4
|
| 22 | 17, 18, 21 | 3eqtri 2105 |
. . 3
|
| 23 | ordeq 4127 |
. . 3
| |
| 24 | 22, 23 | ax-mp 7 |
. 2
|
| 25 | 15, 24 | mpbir 144 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-iun 3680 df-br 3786 df-opab 3840 df-tr 3876 df-iord 4121 df-on 4123 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-iota 4887 df-fun 4924 df-fn 4925 df-fv 4930 df-recs 5943 |
| This theorem is referenced by: tfrlemi14d 5970 |
| Copyright terms: Public domain | W3C validator |