ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 Unicode version

Theorem tfrlem8 5957
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem8  |-  Ord  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem8
Dummy variables  g  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 5949 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2189 . . . . . . 7  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fndm 5018 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
54adantr 270 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  =  z
)
65eleq1d 2147 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( dom  g  e.  On 
<->  z  e.  On ) )
76biimprcd 158 . . . . . . . 8  |-  ( z  e.  On  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) )  ->  dom  g  e.  On ) )
87rexlimiv 2471 . . . . . . 7  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  e.  On )
93, 8sylbi 119 . . . . . 6  |-  ( g  e.  A  ->  dom  g  e.  On )
10 eleq1a 2150 . . . . . 6  |-  ( dom  g  e.  On  ->  ( z  =  dom  g  ->  z  e.  On ) )
119, 10syl 14 . . . . 5  |-  ( g  e.  A  ->  (
z  =  dom  g  ->  z  e.  On ) )
1211rexlimiv 2471 . . . 4  |-  ( E. g  e.  A  z  =  dom  g  -> 
z  e.  On )
1312abssi 3069 . . 3  |-  { z  |  E. g  e.  A  z  =  dom  g }  C_  On
14 ssorduni 4231 . . 3  |-  ( { z  |  E. g  e.  A  z  =  dom  g }  C_  On  ->  Ord  U. { z  |  E. g  e.  A  z  =  dom  g } )
1513, 14ax-mp 7 . 2  |-  Ord  U. { z  |  E. g  e.  A  z  =  dom  g }
161recsfval 5954 . . . . 5  |- recs ( F )  =  U. A
1716dmeqi 4554 . . . 4  |-  dom recs ( F )  =  dom  U. A
18 dmuni 4563 . . . 4  |-  dom  U. A  =  U_ g  e.  A  dom  g
19 vex 2604 . . . . . 6  |-  g  e. 
_V
2019dmex 4616 . . . . 5  |-  dom  g  e.  _V
2120dfiun2 3712 . . . 4  |-  U_ g  e.  A  dom  g  = 
U. { z  |  E. g  e.  A  z  =  dom  g }
2217, 18, 213eqtri 2105 . . 3  |-  dom recs ( F )  =  U. { z  |  E. g  e.  A  z  =  dom  g }
23 ordeq 4127 . . 3  |-  ( dom recs
( F )  = 
U. { z  |  E. g  e.  A  z  =  dom  g }  ->  ( Ord  dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } ) )
2422, 23ax-mp 7 . 2  |-  ( Ord 
dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } )
2515, 24mpbir 144 1  |-  Ord  dom recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   E.wrex 2349    C_ wss 2973   U.cuni 3601   U_ciun 3678   Ord word 4117   Oncon0 4118   dom cdm 4363    |` cres 4365    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-tr 3876  df-iord 4121  df-on 4123  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-iota 4887  df-fun 4924  df-fn 4925  df-fv 4930  df-recs 5943
This theorem is referenced by:  tfrlemi14d  5970
  Copyright terms: Public domain W3C validator