| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabf | Unicode version | ||
| Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
| Ref | Expression |
|---|---|
| elrabf.1 |
|
| elrabf.2 |
|
| elrabf.3 |
|
| elrabf.4 |
|
| Ref | Expression |
|---|---|
| elrabf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. 2
| |
| 2 | elex 2610 |
. . 3
| |
| 3 | 2 | adantr 270 |
. 2
|
| 4 | df-rab 2357 |
. . . 4
| |
| 5 | 4 | eleq2i 2145 |
. . 3
|
| 6 | elrabf.1 |
. . . 4
| |
| 7 | elrabf.2 |
. . . . . 6
| |
| 8 | 6, 7 | nfel 2227 |
. . . . 5
|
| 9 | elrabf.3 |
. . . . 5
| |
| 10 | 8, 9 | nfan 1497 |
. . . 4
|
| 11 | eleq1 2141 |
. . . . 5
| |
| 12 | elrabf.4 |
. . . . 5
| |
| 13 | 11, 12 | anbi12d 456 |
. . . 4
|
| 14 | 6, 10, 13 | elabgf 2736 |
. . 3
|
| 15 | 5, 14 | syl5bb 190 |
. 2
|
| 16 | 1, 3, 15 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 |
| This theorem is referenced by: elrab 2749 frind 4107 rabxfrd 4219 infssuzcldc 10347 |
| Copyright terms: Public domain | W3C validator |